We investigated the effects of the nature of the flooding amino acid on the rate of incorporation of tracer leucine into human skeletal muscle sampled by biopsy. Twenty-three healthy young men (24.5 ± 5.0 yr, 76.2 ± 8.3 kg) were studied in groups of four or five. First, the effects of flooding with phenylalanine, threonine, or arginine (all at 0.05 g/kg body wt) on the incorporation of tracer [13C]leucine were studied. Then the effects of flooding with labeled [13C]glycine [0.1 g/kg body wt, 20 atoms percent excess (APE)] and [13C]serine (0.05 g/kg body wt, 15 APE) on the incorporation of simultaneously infused [13C]leucine were investigated. When a large dose of phenylalanine or threonine was administered, incorporation of the tracer leucine was significantly increased (from 0.036 to 0.067 %/h and 0.037 to 0.070 %/h, respectively; each P < 0.01). However, when arginine, glycine, or serine was administered as a flooding dose, no stimulation of tracer leucine incorporation could be observed. These results, together with those previously obtained, suggest that large doses of individual essential, but not nonessential, amino acids are able to stimulate incorporation of constantly infused tracer amino acids into human muscle protein.
The purpose of this study was to determine the efficacy of glutamine in promoting whole body carbohydrate storage and muscle glycogen resynthesis during recovery from exhaustive exercise. Postabsorptive subjects completed a glycogen-depleting exercise protocol, then consumed 330 ml of one of three drinks, 18.5% (wt/vol) glucose polymer solution, 8 g glutamine in 330 ml glucose polymer solution, or 8 g glutamine in 330 ml placebo, and also received a primed constant infusion of [1-13C]glucose for 2 h. Plasma glutamine concentration was increased after consumption of the glutamine drinks (0.7-1.1 mM, P < 0.05). In the second hour of recovery, whole body nonoxidative glucose disposal was increased by 25% after consumption of glutamine in addition to the glucose polymer (4.48 +/- 0.61 vs. 3.59 +/- 0.18 mmol/kg, P < 0.05). Oral glutamine alone promoted storage of muscle glycogen to an extent similar to oral glucose polymer. Ingestion of glutamine and glucose polymer together promoted the storage of carbohydrate outside of skeletal muscle, the most feasible site being the liver.
E-Learning has proven to be the only resort as a replacement of traditional face-to-face learning methods in the current global lockdown due to COVID-19 pandemic. Academic institutions across the globe have invested heavily into E-Learning and the majority of the courses offered in traditional classroom mode have been converted into E-Learning mode. The success of E-Learning initiatives needs to be ensured to make it a sustainable mode of learning. The objective of the current study is to propose a holistic E-Learning service framework to ensure effective delivery and use of E-Learning Services that contributes to sustainable learning and academic performance. Based on an extensive literature review, a proposed theoretical model has been developed and tested empirically. The model identifies a broad range of success determinants and relates them to different success measures, including learning and academic performance. The proposed model was validated with the response from 397 respondents involved with an E-Learning system in the top five public universities in the southern region of Saudi Arabia through the Partial Least Squares regression technique using SmartPLS software. Five main factors (Learner’s Quality, Instructor’s Quality, Information’s Quality, System’s Quality and Institutional Quality) were identified as a determinant of E-Learning service performance which together explains 48.7% of the variance of perceived usefulness of ELS, 71.2% of the variance of use of the E-Learning system. Perceived usefulness of ELS and use of ELS together explain 70.6% of learning and academic performance of students. Hence the framework will help achieve the sustainable and successful adoption of E-Learning services.
Seven untrained male subjects participated in a double-blind, crossover study conducted to determine the efficacy of different carbohydrate drinks in promoting carbohydrate storage in the whole body and skeletal muscle during recovery from exhaustive exercise. The postabsorptive subjects first completed an exercise protocol designed to deplete muscle fibers of glycogen, then consumed 330 ml of one of three carbohydrate drinks (18.5% glucose polymer, 18.5% sucrose, or 12% sucrose; wt/vol) and also received a primed constant infusion of [1-(13)C]glucose for 2 h. Nonoxidative glucose disposal (3.51 +/- 0.28, 18.5% glucose polymer; 2.96 +/- 0.32, 18.5% sucrose; 2.97 +/- 0.16, 12% sucrose; all mmol. kg(-1). h(-1)) and storage of muscle glycogen (5.31 +/- 1.11, 18.5% glucose polymer; 4.07 +/- 1.05, 18.5% sucrose; 3.45 +/- 0.85, 12% sucrose; all mmol. kg wet wt(-1). h(-1); P < 0.05) were greater after consumption of the glucose polymer drink than after either sucrose drink. The results suggest that the consumption of a glucose polymer drink (containing 61 g carbohydrate) promotes a more rapid storage of carbohydrate in the whole body, skeletal muscle in particular, than an isoenergetic sucrose drink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.