Circular RNAs (circRNAs) are a subclass of noncoding RNAs widely expressed in mammalian cells. We report here the tumorigenic capacity of a circRNA derived from angiomotin-like1 (circ-Amotl1). Circ-Amotl1 is highly expressed in patient tumor samples and cancer cell lines. Single-cell inoculations using circ-Amotl1-transfected tumor cells showed a 30-fold increase in proliferative capacity relative to control. Agarose colony-formation assays similarly revealed a 142-fold increase. Tumor-take rate in nude mouse xenografts using 6-day (219 cells) and 3-day (9 cells) colonies were 100%, suggesting tumor-forming potential of every cell. Subcutaneous single-cell injections led to the formation of palpable tumors in 41% of mice, with tumor sizes >1 cm in 1 month. We further found that this potent tumorigenicity was triggered through interactions between circ-Amotl1 and c-myc. A putative binding site was identified in silico and tested experimentally. Ectopic expression of circ-Amotl1 increased retention of nuclear c-myc, appearing to promote c-myc stability and upregulate c-myc targets. Expression of circ-Amotl1 also increased the affinity of c-myc binding to a number of promoters. Our study therefore reveals a novel function of circRNAs in tumorigenesis, and this subclass of noncoding RNAs may represent a potential target in cancer therapy.
Delayed or impaired wound healing is a major public health issue worldwide, especially in patients with diabetes mellitus and vascular atherosclerosis. MicroRNAs have been identified as key regulators of wound healing. Here, we show that miR-Pirate378a transgenic mice (and thus have inhibited miR-378a-5p function) display enhanced wound healing. Expression of vimentin and β3 integrin, two important modulators of wound healing, is markedly elevated in the transgenic mice. MiR-Pirate378a-transfected cells display greater mobility during migration assays, which was hypothesized to be due to the upregulation of vimentin and β3 integrin. Both molecules were confirmed to be targets of miR-378a, and thus their expression could be rescued by miR-Pirate378a. Overexpression of vimentin also contributed to fibroblast differentiation, and upregulation of β3 integrin was responsible for increased angiogenesis. Mice treatment with miR-Pirate378a-conjugated nanoparticles displayed enhanced wound healing. Thus, we have demonstrated that knockdown of miR-378a increased the expression of its target proteins, vimentin, and β3 integrin, which accelerated fibroblast migration and differentiation in vitro and enhanced wound healing in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.