Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.
In this investigation, biodiesel was produced from Moringa oleifera oil through a transesterification process at operating conditions including a reaction temperature of 60 °C, catalyst concentration of 1% wt., reaction time of 2 h, stirring speed of 1000 rpm and methanol to oil ratio of 8.50:1. Biodiesel blends, B10 and B20, were tested in a compression ignition engine, and the performance and emission characteristics were analyzed and compared with high-speed diesel. The engine was operated at full load conditions with engine speeds varying from 1000 rpm to 2400 rpm. All the performance and exhaust pollutants results were collected and analyzed. It was found that MOB10 produced lower BP (7.44%), BSFC (7.51%), and CO2 (7.7%). The MOB10 also reduced smoke opacity (24%) and HC (10.27%). Compared to diesel, MOB10 also increased CO (2.5%) and NOx (9%) emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.