Summary Paragraph Sensory, motor, and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures1,2. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution but from only a few dozen neurons per shank. Optical Ca2+ imaging3–5 offers more coverage but lacks the temporal resolution to reliably distinguish individual spikes and does not measure local field potentials. To date, no technology compatible with unrestrained animals has combined high spatiotemporal resolution with large volume coverage. To satisfy this need, we designed, fabricated, and tested a new silicon probe called Neuropixels. Each probe has 384 recording channels that can programmably address 960 CMOS processing-compatible low-impedance TiN6 sites that tile a single 10 mm long, 70x20 µm cross section shank. The 6x9 mm probe base is fabricated with the shank on a single chip. Voltage signals are filtered, amplified, multiplexed, and digitized on the base, allowing noise-free digital data transmission directly from the probe. The combination of dense recording sites and high channel count yielded well-isolated spiking activity from hundreds of neurons per probe implanted in mice and rats. Using two probes, more than 700 well-isolated single neurons were simultaneously recorded from five brain structures in an awake mouse. The fully integrated functionality and small size of Neuropixels probes allowed recording large populations of neurons from multiple brain structures in freely moving animals. This combination of high-performance electrode technology and scalable chip fabrication methods opens the path to record brain-wide neural activity during behavior.
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
To study the dynamics of neural processing across timescales, we require the ability to follow the spiking of thousands of individually separable neurons over weeks and months, during unrestrained behavior. To address this need, we introduce the Neuropixels 2.0 probe together with novel analysis algorithms. The new probe has over 5,000 sites and is miniaturized such that two probes plus a headstage, recording 768 sites at once, weigh just over 1 g, suitable for implanting chronically in small mammals. Recordings with high quality signals persisting for at least two months were reliably obtained in two species and six different labs. Improved site density and arrangement combined with new data processing methods enable automatic post-hoc stabilization of data despite brain movements during behavior and across days, allowing recording from the same neurons in the mouse visual cortex for over 2 months. Additionally, an optional configuration allows for recording from multiple sites per available channel, with a penalty to signal-to-noise ratio. These probes and algorithms enable stable recordings from >10,000 sites during free behavior in small animals such as mice.
Recent advances in multi-electrode array technology have made it possible to monitor large neuronal ensembles at cellular resolution. In humans, however, current approaches either restrict recordings to only a few neurons per penetrating electrode or combine the signals of thousands of neurons in local field potential (LFP) recordings. Here, we describe a new probe variant and set of techniques which enable simultaneous recording from over 200 well-isolated cortical single units in human participants during intraoperative neurosurgical procedures using silicon Neuropixels probes. We characterized a diversity of extracellular waveforms with eight separable single unit classes, with differing firing rates, positions along the length of the linear electrode array, spatial spread of the waveform, and modulation by LFP events such as interictal discharges and burst suppression. While some additional challenges remain in creating a turn-key recording system, high-density silicon arrays provide a path for studying humanspecific cognitive processes and their dysfunction at unprecedented spatiotemporal resolution.Major technological advances in the past decade have led to a revolution in the neurosciences.Many research programs now routinely rely on the analysis of single-neuron action potentials from hundreds and even thousands of neurons, which provide a rich understanding of the coordinated activity of large neuronal ensembles that underlie sensory, motor, and cognitive operations [1][2][3][4] . While these developments have been most pronounced in animal models, there have been parallel, albeit slower, advances in the ability to record from single neurons in humans. Single-unit recordings in humans have been performed since the mid-1950s 5-8 , and were foundational in understanding the role of neural circuits in neurologic disease. For example, such techniques helped to establish an understanding of the relationship between .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.