FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas exchange models. Findings so far include 1) net C0 2 exchange of temperate broadleaved forests increases by about 5.7 g C m~2 day-1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem C0 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of C0 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net C0 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.
A comprehensive evaluation of energy balance closure is performed across 22 sites and 50 site-years in FLUXNET, a network of eddy covariance sites measuring long-term carbon and energy fluxes in contrasting ecosystems and climates. Energy balance closure was evaluated by statistical regression of turbulent energy fluxes (sensible and latent heat (LE)) against available energy (net radiation, less the energy stored) and by solving for the energy balance ratio, the ratio of turbulent energy fluxes to available energy. These methods indicate a general lack of closure at most sites, with a mean imbalance in the order of 20%. The imbalance was prevalent in all measured vegetation types and in climates ranging from Mediterranean to temperate and arctic. There were no clear differences between sites using open and closed path infrared gas analyzers. At a majority of sites closure improved with turbulent intensity (friction velocity), but lack of total closure was still prevalent under most conditions. The imbalance was greatest during nocturnal periods. The results suggest that estimates of the scalar turbulent fluxes of sensible and LE are underestimated and/or that available energy is overestimated. The implications on interpreting long-term CO 2 fluxes at FLUXNET sites depends on whether the imbalance results primarily from general errors associated * Corresponding author. Tel.: +1-510-642-2874; fax: +1-510-643-5098. E-mail address: baldocchi@nature.berkeley.edu (D. Baldocchi).0168-1923/02/$ -see front matter. Published by Elsevier Science B.V. PII: S 0 1 6 8 -1 9 2 3 ( 0 2 ) 0 0 1 0 9 -0 224 K. Wilson et al. / Agricultural and Forest Meteorology 113 (2002) with the eddy covariance technique or from errors in calculating the available energy terms. Although it was not entirely possible to critically evaluate all the possible sources of the imbalance, circumstantial evidence suggested a link between the imbalance and CO 2 fluxes. For a given value of photosynthetically active radiation, the magnitude of CO 2 uptake was less when the energy imbalance was greater. Similarly, respiration (estimated by nocturnal CO 2 release to the atmosphere) was significantly less when the energy imbalance was greater. Published by Elsevier Science B.V.
More than half of the solar energy absorbed by land surfaces is currently used to evaporate water(1). Climate change is expected to intensify the hydrological cycle(2) and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land-a key diagnostic criterion of the effects of climate change and variability-remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network(3), meteorological and remote-sensing observations, and a machine-learning algorithm(4). In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface-models. Our results suggest that global annual evapotranspiration increased on average by 7.1 +/- 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Nino event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science
[1] We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5°× 0.5°spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 10 18 yr −1 ), H (164 ± 15 J × 10 18 yr −1), and GPP (119 ± 6 Pg C yr ) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr −1 ) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.
Heightened awareness of global change issues within both science and political communities has increased interest in using the global network of eddy covariance flux towers to more fully understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons of net ecosystem exchange (F NEE ) responses are being made among biome types, phenology patterns, and stress conditions. The comparisons are usually performed on annual sums of F NEE ; however, the average data coverage during a year is only 65%. Therefore, robust and consistent gap filling methods are required.We review several methods of gap filling and apply them to data sets available from the EUROFLUX and AmeriFlux databases. The methods are based on mean diurnal variation (MDV), look-up tables (LookUp), and nonlinear regressions (Regr.), and the impact of different gap filling methods on the annual sum of F NEE is investigated. The difference between annual F NEE filled by MDV compared to F NEE filled by Regr. ranged from −45 to +200 g C m −2 per year (MDV−Regr.). Comparing LookUp and Regr. methods resulted in a difference (LookUp−Regr.) ranging from −30 to +150 g C m −2 per year.We also investigated the impact of replacing measurements at night, when turbulent mixing is insufficient. The nighttime correction for low friction velocities (u * ) shifted annual F NEE on average by +77 g C m −2 per year, but in certain cases as much as +185 g C m −2 per year.Our results emphasize the need to standardize gap filling-methods for improving the comparability of flux data products from regional and global flux networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.