he Pierre Auger Observatory, located on a vast, high plain in western\ud
Argentina, is the world's largest cosmic ray observatory. The objectives\ud
of the Observatory are to probe the origin and characteristics of cosmic\ud
rays above 10(17) eV and to study the interactions of these, the most\ud
energetic particles observed in nature. The Auger design features an\ud
array of 1660 water Cherenkov particle detector stations spread over\ud
3000 km(2) overlooked by 24 air fluorescence telescopes. In addition,\ud
three high elevation fluorescence telescopes overlook a 23.5 km(2),\ud
61-detector infilled array with 750 in spacing. The Observatory has been\ud
in successful operation since completion in 2008 and has recorded data\ud
from an exposure exceeding 40,000 km(2) sr yr. This paper describes the\ud
design and performance of the detectors, related subsystems and\ud
infrastructure that make up the Observatory
HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85 % azimuthal coverage over a polar angle interval from 18• to 85• , a single electron efficiency of 50 % and a vector meson mass resolution of 2.5 %. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.