The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
PHYSICAL REVIEW LETTERS
The calibration and performance of the opposite-side flavour tagging algorithms used for the measurements of time-dependent asymmetries at the LHCb experiment are described. The algorithms have been developed using simulated events and optimized and calibrated with B+→J/ψK+, B0→J/ψK∗0 and B0→D∗−μ+νμ decay modes with 0.37 fb−1 of data collected in pp collisions at during the 2011 physics run. The opposite-side tagging power is determined in the B+→J/ψK+ channel to be (2.10±0.08±0.24) %, where the first uncertainty is statistical and the second is systematic.
The production of J/ψ mesons in proton-proton collisions at √ s = 7 TeV is studied with the LHCb detector at the LHC. The differential cross-section for prompt J/ψ production is measured as a function of the J/ψ transverse momentum p T and rapidity y in the fiducial region p T ∈ [0; 14] GeV/c and y ∈ [2.0; 4 cross-section and fraction of J/ψ from b-hadron decays are also measured in the same p T and y ranges. The analysis is based on a data sample corresponding to an integrated luminosity of 5.2 pb −1 . The measured cross-sections integrated over the fiducial region are 10.52 ± 0.04 ± 1.40−2.20 µb for prompt J/ψ production and 1.14 ± 0.01 ± 0.16 µb for J/ψ from b-hadron decays, where the first uncertainty is statistical and the second systematic. The prompt J/ψ production cross-section is obtained assuming no J/ψ polarisation and the third error indicates the acceptance uncertainty due to this assumption.
Link to publication Citation for published version (APA):Abreu, P., Boudinov, E., Holthuizen, D. J., Kjaer, N. J., Kluit, P. M., Mulders, M. P., ... van Eldik, J. E. (1997). Search for neutral heavy leptons produced in $Z$ decays. Zeitschrift für Physik. C, Particles and Fields, 74, 57. DOI: 10.1007/s002880050370 General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.Download date: 09 May 2018 Z. Phys. C 74, 57-71 (1997) ZEITSCHRIFT FÜR PHYSIK C Abstract. Weak isosinglet Neutral Heavy Leptons (ν m ) have been searched for using data collected by the DEL-PHI detector corresponding to 3.3 × 10 6 hadronic Z 0 decays at LEP1. Four separate searches have been performed, for short-lived ν m production giving monojet or acollinear jet topologies, and for long-lived ν m giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(Z 0 → ν m ν) of about 1.3 × 10 −6 at 95% confidence level for ν m masses between 3.5 and 50 GeV/c 2 . Outside this range the limit weakens rapidly with the ν m mass. The results are also interpreted in terms of limits for the single production of excited neutrinos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.