We study e+e-→π+π-hc at center-of-mass energies from 3.90 to 4.42 GeV by using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross sections are measured at 13 energies and are found to be of the same order of magnitude as those of e+e-→π+π-J/ψ but with a different line shape. In the π±hc mass spectrum, a distinct structure, referred to as Zc(4020), is observed at 4.02 GeV/c2. The Zc(4020) carries an electric charge and couples to charmonium. A fit to the π±hc invariant mass spectrum, neglecting possible interferences, results in a mass of (4022.9±0.8±2.7) MeV/c2 and a width of (7.9±2.7±2.6) MeV for the Zc(4020), where the first errors are statistical and the second systematic. The difference between the parameters of this structure and the Zc(4025) observed in the D*D[over ¯]* final state is within 1.5σ, but whether they are the same state needs further investigation. No significant Zc(3900) signal is observed, and upper limits on the Zc(3900) production cross sections in π±hc at center-of-mass energies of 4.23 and 4.26 GeV are set.
Singlet fission, a multistep molecular process in which one photon generates two triplet excitons, holds great technological promise. Here, by applying a combination of transient transmittance and two-dimensional electronic spectroscopy with 5 fs laser pulses, we resolve the full set of fission steps before the onset of spin dephasing. In addition to its role as a viable singlet fission material, single-crystalline rubrene is selected because its energetics and transition dipole alignment uniquely allow for the unambiguous identification of the various fission steps through their contributions to distinct spectroscopic features. The measurements reveal that the neighboring correlated triplet pair achieves its maximum population within 20 fs. Subsequent growth of the triplet signal on picosecond time scales is attributable to spatial separation of the triplets, proceeding nonadiabatically through weakly coupled but near-resonant states. As such, we provide evidence in crystalline rubrene for a singlet fission step that, until now, has not been convincingly observed.
We study the process e+ e- →(D* D*)± π∓ at a center-of-mass energy of 4.26 GeV using a 827 pb(-1) data sample obtained with the BESIII detector at the Beijing Electron Positron Collider. Based on a partial reconstruction technique, the Born cross section is measured to be (137±9±15) pb. We observe a structure near the (D* D*)± threshold in the π∓ recoil mass spectrum, which we denote as the Zc±(4025). The measured mass and width of the structure are (4026.3±2.6±3.7) MeV/c2 and (24.8±5.6±7.7) MeV, respectively. Its production ratio σ(e+ e- → Zc±(4025)π∓ → (D* D*)± π∓)/σ(e+ e- → (D* D*)± π∓) is determined to be 0.65±0.09±0.06. The first uncertainties are statistical and the second are systematic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.