Magnetic susceptibility, NMR, muon spin relaxation, and inelastic neutron scattering measurements show that kapellasite, Cu3Zn(OH)6Cl2, a geometrically frustrated spin-1/2 kagome antiferromagnet polymorphic with herbertsmithite, is a gapless spin liquid showing unusual dynamic short-range correlations of noncoplanar cuboc2 type which persist down to 20 mK. The Hamiltonian is determined from a fit of a high-temperature series expansion to bulk susceptibility data and possesses competing exchange interactions. The magnetic specific heat calculated from these exchange couplings is in good agreement with experiment. The temperature dependence of the magnetic structure factor and the muon relaxation rate are calculated in a Schwinger-boson approach and compared to experimental results.
We have studied the effect of nonmagnetic Zn impurities in the coupled spin ladder Bi(Cu_{1-x}Zn_{x})_{2}PO_{6} using ;{31}P NMR, muon spin resonance (microSR), and quantum Monte Carlo simulations. Our results show that the impurities induce in their vicinity antiferromagnetic polarizations, extending over a few unit cells. At low temperature, these extended moments freeze in a process which is found universal among various other spin-gapped compounds: isolated ladders, Haldane, or spin-Peierls chains. This allows us to propose a simple common framework to explain the generic low-temperature impurity-induced freezings observed in low-dimensional spin-gapped materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.