The National Spherical Torus Experiment (NSTX) is being built at PPPL to test the fusion physics principles for the ST concept at the MA level. The NSTX nominal plasma parameters are R 0 = 85 cm, a = 67 cm, R/a ³ 1.26, B T = 3 kG, I p = 1 MA, q 95 = 14, elongation k £ 2.2, triangularity d £ 0.5, and plasma pulse length of up to 5 sec. The plasma heating / current drive (CD) tools are High Harmonic Fast Wave (HHFW) (6 MW, 5 sec), Neutral Beam Injection (NBI) (5 MW, 80 keV, 5 sec), and Coaxial Helicity Injection (CHI). Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes including very high plasma beta, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well, and high pressure driven sheared flow. In addition, the NSTX program plans to explore fully noninductive plasma start-up as well as a dispersive scrape-off layer for heat and particle flux handling. MotivationA broad range of encouraging advances has been made in the exploration of the Spherical Torus (ST) concept. 1 Such advances include promising experimental data from pioneering experiments, theoretical predictions, near-term fusion energy development projections such as the Volume Neutron Source 2 , and future applications such as power plant studies 3 . Recently, the START device has achieved a very high toroidal beta b T » 40% regime with b N » 5.0 at low q 95 » 3. 4 The National Spherical Torus Experiment (NSTX) is being built at PPPL to test the fusion physics principles for the ST concept at the MA level. 5 The NSTX device/plasma configuration allows the plasma shaping factor, I p q 95 / a B , to reach as high as 80 an order of magnitude greater than that achieved in conventional high aspect ratio tokamaks. The key physics objective of NSTX is to attain an advanced ST regime; i.e., simultaneous ultra high beta (b), high confinement, and high bootstrap current fraction (f bs ). 6 This regime is considered to be essential for the development of an economical ST power-plant because it minimizes the recirculating power and power plant core size. Other NSTX mission elements crucial for ST power plant development are the demonstration at the MA level of fully noninductive operation and the development of acceptable power and particle handling concepts. NSTX Facility Design Capability and Technology ChallengesThe NSTX facility is designed to achieve the NSTX mission with the following capabilities: ¥ I p = 1 MA for low collisionality at relevant densities, ¥ R/a ³ 1.26, including OH solenoid and coaxial helicity injection 7 (CHI) for startup,
This study, called APEX, is exploring novel concepts for fusion chamber technology that can substantially improve the attractiveness of fusion energy systems. The emphasis of the study is on fundamental understanding and advancing the underlying engineering sciences, integration of the physics and engineering requirements, and enhancing innovation for the chamber technology components surrounding the plasma. The chamber technology goals in APEX include: (1) high power density capability with neutron wall load \ 10 MW/m 2 and surface heat flux \ 2 MW/m 2 , (2) high power conversion efficiency ( \ 40%), (3) high availability, and (4) simple technological and material constraints. Two classes of innovative concepts have emerged that offer great promise and deserve further (2001) 181-247 182 research and development. The first class seeks to eliminate the solid ''bare'' first wall by flowing liquids facing the plasma. This liquid wall idea evolved during the APEX study into a number of concepts based on: (a) using liquid metals (Li or Sn-Li) or a molten salt (Flibe) as the working liquid, (b) utilizing electromagnetic, inertial and/or other types of forces to restrain the liquid against a backing wall and control the hydrodynamic flow configurations, and (c) employing a thin ( 2 cm) or thick ( 40 cm) liquid layer to remove the surface heat flux and attenuate the neutrons. These liquid wall concepts have some common features but also have widely different issues and merits. Some of the attractive features of liquid walls include the potential for: (1) high power density capability; (2) higher plasma b and stable physics regimes if liquid metals are used; (3) increased disruption survivability; (4) reduced volume of radioactive waste; (5) reduced radiation damage in structural materials; and (6) higher availability. Analyses show that not all of these potential advantages may be realized simultaneously in a single concept. However, the realization of only a subset of these advantages will result in remarkable progress toward attractive fusion energy systems. Of the many scientific and engineering issues for liquid walls, the most important are: (1) plasma-liquid interactions including both plasma-liquid surface and liquid wall-bulk plasma interactions; (2) hydrodynamic flow configuration control in complex geometries including penetrations; and (3) heat transfer at free surface and temperature control. The second class of concepts focuses on ideas for extending the capabilities, particularly the power density and operating temperature limits, of solid first walls. The most promising idea, called EVOLVE, is based on the use of a high-temperature refractory alloy (e.g. W -5% Re) with an innovative cooling scheme based on the use of the heat of vaporization of lithium. Calculations show that an evaporative system with Li at 1 200°C can remove the goal heat loads and result in a high power conversion efficiency. The vapor operating pressure is low, resulting in a very low operating stress in the structure. In ad...
Compact optimized stellarators offer novel solutions for confining high-β plasmas and developing magnetic confinement fusion. The three-dimensional plasma shape can be designed to enhance the magnetohydrodynamic (MHD) stability without feedback or nearby conducting structures and provide driftorbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low aspect ratio, high β limit, and good confinement of advanced tokamaks. Quasiaxisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation ∼1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassicaltearing modes for β > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at β = 4% (the rest is from the coils); thus the equilibrium is much less non-linear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of 'reversed' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.
Recent experiments (Synakowski et al 2004 Nucl. Fusion 43 1648, Lloyd et al 2004. Fusion 46 B477) on the Spherical Tokamak (or Spherical Torus, ST) (Peng 2000 Phys. Plasmas 7 1681) have discovered robust plasma conditions, easing shaping, stability limits, energy confinement, self-driven current and sustainment. This progress has encouraged an update of the plasma conditions and engineering of a Component Test Facility (CTF), (Cheng 1998 Fusion Eng. Des. 38 219) which is a very valuable step in the development of practical fusion energy. The testing conditions in a CTF are characterized by high fusion neutron fluxes n ≈ 8.8 × 10 13 n s −1 cm −2 ('wall loading' W L ≈ 2 MW m −2 ), over size-scale >10 5 cm 2 and depth-scale >50 cm, delivering >3 accumulated displacement per atom per year ('neutron fluence' > 0.3 MW yr −1 m −2 ) (Abdou et al 1999 Fusion Technol. 29 1). Such conditions are estimated to be achievable in a CTF with R 0 = 1.2 m, A = 1.5, elongation ∼3, I p ∼ 12 MA, B T ∼ 2.5 T, producing a driven fusion burn using 47 MW of combined neutral beam and RF heating power. A design concept that allows straight-line access via remote handling to all activated fusion core components is developed and presented. The ST CTF will test the lifetime of single-turn, copper alloy centre leg for the toroidal field coil without an induction solenoid and neutron shielding and require physics data on solenoid-free plasma current initiation, ramp-up to and sustainment at multiple megaampere
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.