Significance
Understanding loci nominated by genome-wide association studies (GWASs) is challenging. Here, we show, using the specific example of Parkinson disease, that identification of protein–protein interactions can help determine the most likely candidate for several GWAS loci. This result illustrates a significant general principle that will likely apply across multiple diseases.
A different pattern of frontal activation during walking was observed between groups. The higher activation during usual walking in patients with PD suggests that the prefrontal cortex plays an important role already during simple walking. However, higher activation relative to baseline during obstacle negotiation and not during DT in the patients with PD demonstrates that prefrontal activation depends on the nature of the task. These findings may have important implications for rehabilitation of gait in patients with PD.
Mutations in the glucocerebrosidase gene (GBA), which cause Gaucher disease, are also potent risk factors for Parkinson's disease. We examined whether a genetic burden of variants in other lysosomal storage disorder genes is more broadly associated with Parkinson's disease susceptibility. The sequence kernel association test was used to interrogate variant burden among 54 lysosomal storage disorder genes, leveraging whole exome sequencing data from 1156 Parkinson's disease cases and 1679 control subjects. We discovered a significant burden of rare, likely damaging lysosomal storage disorder gene variants in association with Parkinson's disease risk. The association signal was robust to the exclusion of GBA, and consistent results were obtained in two independent replication cohorts, including 436 cases and 169 controls with whole exome sequencing and an additional 6713 cases and 5964 controls with exome-wide genotyping. In secondary analyses designed to highlight the specific genes driving the aggregate signal, we confirmed associations at the GBA and SMPD1 loci and newly implicate CTSD, SLC17A5, and ASAH1 as candidate Parkinson's disease susceptibility genes. In our discovery cohort, the majority of Parkinson's disease cases (56%) have at least one putative damaging variant in a lysosomal storage disorder gene, and 21% carry multiple alleles. Our results highlight several promising new susceptibility loci and reinforce the importance of lysosomal mechanisms in Parkinson's disease pathogenesis. We suggest that multiple genetic hits may act in combination to degrade lysosomal function, enhancing Parkinson's disease susceptibility.
BACKGROUNDLevodopa is the main treatment for symptoms of Parkinson's disease. Determining whether levodopa also has a disease-modifying effect could provide guidance as to when in the course of the disease the treatment with this drug should be initiated.
METHODSIn a multicenter, double-blind, placebo-controlled, delayed-start trial, we randomly assigned patients with early Parkinson's disease to receive levodopa (100 mg three times per day) in combination with carbidopa (25 mg three times per day) for 80 weeks (early-start group) or placebo for 40 weeks followed by levodopa in combination with carbidopa for 40 weeks (delayed-start group). The primary outcome was the between-group difference in the mean change from baseline to week 80 in the total score on the Unified Parkinson's Disease Rating Scale (UPDRS; scores range from 0 to 176, with higher scores signifying more severe disease). Secondary analyses included the progression of symptoms, as measured by the UPDRS score, between weeks 4 and 40 and the noninferiority of early initiation of treatment to delayed initiation between weeks 44 and 80, with a noninferiority margin of 0.055 points per week.
RESULTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.