Coronal mass ejections (CMEs) often exhibit the typical three-part structure in the corona when observed with white-light coronagraphs, i.e., the bright leading front, dark cavity, and bright core, corresponding to a high-lowhigh density sequence. As CMEs result from eruptions of magnetic flux ropes (MFRs), which can possess either lower (e.g., coronal-cavity MFRs) or higher (e.g., hot-channel MFRs) density compared to their surroundings in the corona, the traditional opinion regards the three-part structure as the manifestations of coronal plasma pileup (high density), coronal-cavity MFR (low density), and filament (high density) contained in the trailing part of MFR, respectively. In this paper, we demonstrate that filament-unrelated CMEs can also exhibit the classical three-part structure. The observations were made from different perspectives through an event that occurred on 2011 October 4. The CME cavity corresponds to the low-density zone between the leading front and the high-density core, and it is obvious in the low corona and gradually becomes fuzzy when propagating outward. The bright core corresponds to a high density structure that is suggested to be an erupting MFR. The MFR is recorded from both edge-on and face-on perspectives, exhibiting different morphologies that are due to projection effects. We stress that the zone (MFR) with lower (higher) density in comparison to the surroundings can appear as the dark cavity (bright core) when observed through white-light coronagraphs, which is not necessarily the coronal-cavity MFR (erupted filament).
So far, most studies on the structure of coronal mass ejections (CMEs) are conducted through white-light coronagraphs, demonstrating that about one third of CMEs exhibit the typical three-part structure in the high corona (e.g., beyond 2 ), i.e., the bright front, the dark cavity, and the bright core. In this paper, we address the CME structure in the low corona (e.g., below 1.3 ) through extreme-ultraviolet (EUV) passbands and find that the three-part CMEs in the white-light images can possess a similar three-part appearance in the EUV images, i.e., a leading edge, a low-density zone, and a filament or hot channel. The analyses identify that the leading edge and the filament or hot channel in the EUV passbands evolve into the front and the core later within several solar radii in the white-light passbands, respectively. What is more, we find that the CMEs without an obvious cavity in the white-light images can also exhibit the clear three-part appearance in the EUV images, which means that the low-density zone in the EUV images (observed as the cavity in white-light images) can be compressed and/or transformed gradually by the expansion of the bright core and/or the reconnection of the magnetic field surrounding the core during the CME propagation outward. Our study suggests that more CMEs can possess the clear three-part structure in their early eruption stage. The nature of the low-density zone between the leading edge and the filament or hot channel is discussed.
Coronal mass ejections (CMEs) often exhibit the classic three-part structure in a coronagraph, i.e., the bright front, dark cavity, and bright core, which are traditionally considered as the manifestations of coronal plasma pileup, magnetic flux rope (MFR), and filament, respectively. However, a recent survey based on 42 CMEs all possessing the three-part structure found that a large majority (69%) do not contain an eruptive filament at the Sun. Therefore, a challenging opinion is proposed and claims that the bright core can also correspond to the MFR, which is supported by the CME simulation. Then what is the nature of the CME core? In this paper, we address this issue through a CME associated with the eruption of a filament-hosting MFR on 2013 September 29. This CME exhibits the three-part morphology in multiple white-light coronagraphs from different perspectives. The new finding is that the bright core contains both a sharp and a fuzzy component. Through tracking the filament motion continuously from its source region to the outer corona, we conclude that the sharp component corresponds to the filament. The fuzzy component is suggested to result from the MFR that supports the filament against the gravity in the corona. Our study can shed more light on the nature of CME cores, and explain the core whether or not the filament is involved with a uniform scenario. The nature of the CME cavity is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.