Non-healing skin ulcers are often resistant to most common therapies. Treatment with growth factors has been demonstrated to improve closure of chronic wounds. Here we investigate whether lyophilized culture supernatant of freshly isolated peripheral blood mononuclear cells (PBMC) is able to enhance wound healing. PBMC from healthy human individuals were prepared and cultured for 24 hours. Supernatants were collected, dialyzed and lyophilized (SECPBMC). Six mm punch biopsy wounds were set on the backs of C57BL/6J-mice and SECPBMC containing emulsion or controls were applied daily for three days. Morphology and neo-angiogenesis were analyzed by H&E-staining and CD31 immuno-staining, respectively. In vitro effects on diverse skin cells were investigated by migration assays, cell cycle analysis, and tube formation assay. Signaling pathways were analyzed by Western blot analysis. Application of SECPBMC on 6 mm punch biopsy wounds significantly enhanced wound closure. H&E staining of the wounds after 6 days revealed that wound healing was more advanced after application of SECPBMC containing emulsion. Furthermore, there was a massive increase in CD31 positive cells, indicating enhanced neo-angiogenesis. In primary human fibroblasts (FB) and keratinocytes (KC) migration but not proliferation was induced. In endothelial cells (EC) SECPBMC induced proliferation and tube-formation in a matrigel-assay. In addition, SECPBMC treatment of skin cells led to the induction of multiple signaling pathways involved in cell migration, proliferation and survival. In summary, we could show that emulsions containing the secretome of PBMC derived from healthy individuals accelerates wound healing in a mouse model and induce wound healing associated mechanisms in human primary skin cells. The formulation and use of such emulsions might therefore represent a possible novel option for the treatment of non-healing skin ulcers.
Skin aging is driven by intrinsic and extrinsic factors impacting on skin functionality with progressive age. One factor of this multifaceted process is cellular senescence, as it has recently been identified to contribute to a declining tissue functionality in old age. In the skin, senescent cells have been found to markedly accumulate with age, and thus might impact directly on skin characteristics. Especially the switch from young, extracellular matrix-building fibroblasts to a senescence-associated secretory phenotype (SASP) could alter the microenvironment in the skin drastically and therefore promote skin aging. In order to study the influence of senescence in human skin, 3D organotypic cultures are a well-suited model system. However, only few "aged" skinequivalent (SE) models are available, requiring complex and long-term experimental setups. Here, we adapted a previously published full-thickness SE model by seeding increasing ratios of stress-induced premature senescent versus normal fibroblasts into the collagen matrix, terming these SE "senoskin". Immunohistochemistry stainings revealed a shift in the balance between proliferation (Ki67) and differentiation (Keratin 10 and Filaggrin) of keratinocytes within our senoskin equivalents, as well as partial impairment of skin barrier function and changed surface properties. Monitoring of cytokine levels of known SASP factors confirmedly showed an upregulation in 2D cultures of senescent cells and at the time of seeding into the skin equivalent. Surprisingly, we find a blunted response of cytokines in the senoskin equivalent over time during 3D differentiation.
Developing effective therapies against chronic wound healing deficiencies is a global priority. Thus we evaluated the safety of two different doses of topically administered autologous APOSEC, the secretome of apoptotic peripheral blood mononuclear cells (PBMCs), in healthy male volunteers with artificial dermal wounds. Ten healthy men were enrolled in a single-center, randomized, double-blinded, placebo-controlled phase 1 trial. Two artificial wounds at the upper arm were generated using a 4-mm punch biopsy. Each participant was treated with both topically applied APOSEC and placebo in NuGel for 7 consecutive days. The volunteers were randomized into two groups: a low-dose group (A) receiving the supernatant of 12.5 × 106 PBMCs and a high-dose group (B) receiving an equivalent of 25 × 106 PBMCs resuspended in NuGel Hydrogel. Irradiated medium served as placebo. The primary outcome was the tolerability of the topical application of APOSEC. All adverse events were recorded until 17 days after the biopsy. Local tolerability assessment was measured on a 4-point scale. Secondary outcomes were wound closure and epithelization at day 7. No therapy-related serious adverse events occurred in any of the participants, and both low- and high-dose treatments were well tolerated. Wound closure was not affected by APOSEC therapy.
Despite recent advances in understanding skin scarring, mechanisms triggering hypertrophic scar formation are still poorly understood. In the present study, we investigate mature human hypertrophic scars and developing scars in mice at single cell resolution. Compared to normal skin, we find significant differences in gene expression in most cell types present in scar tissue. Fibroblasts show the most prominent alterations in gene expression, displaying a distinct fibrotic signature. By comparing genes upregulated in murine fibroblasts during scar development with genes highly expressed in mature human hypertrophic scars, we identify a group of serine proteases, tentatively involved in scar formation. Two of them, dipeptidyl-peptidase 4 (DPP4) and urokinase (PLAU), are further analyzed in functional assays, revealing a role in TGFβ1-mediated myofibroblast differentiation and over-production of components of the extracellular matrix in vitro. Topical treatment with inhibitors of DPP4 and PLAU during scar formation in vivo shows anti-fibrotic activity and improvement of scar quality, most prominently after application of the PLAU inhibitor BC-11. In this study, we delineate the genetic landscape of hypertrophic scars and present insights into mechanisms involved in hypertrophic scar formation. Our data suggest the use of serine protease inhibitors for the treatment of skin fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.