The tumor microenvironment (TME) of nasopharyngeal carcinoma (NPC) harbors a heterogeneous and dynamic stromal population. A comprehensive understanding of this tumor-specific ecosystem is necessary to enhance cancer diagnosis, therapeutics, and prognosis. However, recent advances based on bulk RNA sequencing remain insufficient to construct an in-depth landscape of infiltrating stromal cells in NPC. Here we apply single-cell RNA sequencing to 66,627 cells from 14 patients, integrated with clonotype identification on T and B cells. We identify and characterize five major stromal clusters and 36 distinct subpopulations based on genetic profiling. By comparing with the infiltrating cells in the non-malignant microenvironment, we report highly representative features in the TME, including phenotypic abundance, genetic alternations, immune dynamics, clonal expansion, developmental trajectory, and molecular interactions that profoundly influence patient prognosis and therapeutic outcome. The key findings are further independently validated in two single-cell RNA sequencing cohorts and two bulk RNA-sequencing cohorts. In the present study, we reveal the correlation between NPC-specific characteristics and progression-free survival. Together, these data facilitate the understanding of the stromal landscape and immune dynamics in NPC patients and provides deeper insights into the development of prognostic biomarkers and therapeutic targets in the TME.
The genetic landscape of clear cell renal cell carcinoma (ccRCC) had been investigated extensively but its evolution patterns remained unclear. Here we analyze the clonal architectures of 473 patients from three different populations. We find that the mutational signatures vary substantially across different populations and evolution stages. The evolution patterns of ccRCC have great inter-patient heterogeneities, with del(3p) being regarded as the common earliest event followed by three early departure points: VHL and PBRM1 mutations, del(14q) and other somatic copy number alterations (SCNAs) including amp(7), del(1p) and del(6q). We identify three prognostic subtypes of ccRCC with distinct clonal architectures and immune infiltrates: long-lived patients, enriched with VHL but depleted of BAP1 mutations, have high levels of Th17 and CD8+ T cells while short-lived patients with high burden of SCNAs have high levels of Tregs and Th2 cells, highlighting the importance of evaluating evolution patterns in the clinical management of ccRCC.
Synaptic changes are closely associated with cognitive deficits. In addition, testosterone (T) is known to exert regulative effects on synaptic plasticity. T may improve cognitive deficits in Alzheimer's disease (AD) patients, but the underlying mechanisms of androgenic action on cognitive performance remain unclear. The aim of this study was thus to examine the protective mechanism attributed to T on cognitive performance in an AD senescence, accelerated mouse prone 8 (SAMP8) animal model. Using Golgi staining to quantify the dendritic spine density in hippocampal CA1 region, molecular biomarkers of synapse function were analyzed using immunohistochemistry and western blot. T significantly increased the dendritic spine density in hippocampal CA1 region, while flutamide (F) inhibited these T-mediated effects. Immunohistochemistry and western blot analysis showed that the expression levels of brain derived neurotrophic factor (BDNF), postsynaptic density 95 (PSD-95), and p-cyclic-AMP response element binding protein (CREB)/CREB levels were significantly elevated in the T group, but F reduced the T-induced effects in these biomarkers to control levels. There were no significant differences in the expression levels of PSD-95, BDNF, and p-CREB/CREB between C and F. These findings indicate that the effects of T on improvement in synaptic plasticity were mediated via androgen receptor (AR). It is conceivable that new treatments targeted toward preventing synaptic pathology in AD may involve the use of androgen-acting drugs.
Background Lymph node metastasis is one of most common determinants of the stage and prognosis of gastric cancer (GC). However, the key molecular events and mechanisms mediating lymph node metastasis remain elusive. Methods RNA sequencing was used to identify driver genes responsible for lymph node metastasis in four cases of gastric primary tumors, metastatic lesions of lymph nodes and matched normal gastric epithelial tissue. qRT–PCR and IHC were applied to examine RPRD1B expression. Metastatic functions were evaluated in vitro and in vivo. RNA-seq was used to identify target genes. ChIP, EMSA and dual luciferase reporter assays were conducted to identify the binding sites of target genes. Co-IP, RIP, MeRIP, RNA-FISH and ubiquitin assays were applied to explore the underlying mechanisms. Results The top 8 target genes (RPRD1B, MAP4K4, MCM2, TOPBP1, FRMD8, KBTBD2, ADAM10 and CXCR4) that were significantly upregulated in metastatic lymph nodes of individuals with GC were screened. The transcriptional cofactor RPRD1B (regulation of nuclear pre-mRNA domain containing 1B) was selected for further characterization. The clinical analysis showed that RPRD1B was significantly overexpressed in metastatic lymph nodes and associated with poor outcomes in patients with GC. The Mettl3-induced m6A modification was involved in the upregulation of RPRD1B. Functionally, RPRD1B promoted lymph node metastasis capabilities in vitro and in vivo. Mechanistic studies indicated that RPRD1B increased fatty acid uptake and synthesis by transcriptionally upregulating c-Jun/c-Fos and activating the c-Jun/c-Fos/SREBP1 axis. In addition, NEAT1 was upregulated significantly by c-Jun/c-Fos in RPRD1B-overexpressing cells. NEAT1, in turn, increased the stability of the RPRD1B mRNA by recruiting the m6A “reader” protein hnRNPA2B1 and reduced the degradation of the RPRD1B protein by inhibiting TRIM25-mediated ubiquitination. Notably, this functional circuitry was disrupted by an inhibitor of c-Jun/c-Fos/AP1 proteins (SR11302) and small interfering RNAs targeting NEAT1, leading to a preferential impairment of lymph node metastasis. Conclusions Based on these findings, RPRD1B facilitated FA metabolism and assisted primary tumor implantation in lymph nodes via the c-Jun/c-Fos/SREBP1 axis, which was enhanced by a NEAT1-mediated positive feedback loop, serving as a potential therapeutic target for GC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.