We tested the hypothesis that AMP-activated protein kinase (AMPK), an energy sensor, regulates diabetes-induced renal hypertrophy. In kidney glomerular epithelial cells, high glucose (30 mM), but not equimolar mannitol, stimulated de novo protein synthesis and induced hypertrophy in association with increased phosphorylation of eukaryotic initiation factor 4E binding protein 1 and decreased phosphorylation of eukaryotic elongation factor 2, regulatory events in mRNA translation. These high-glucose-induced changes in protein synthesis were phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin (mTOR) dependent and transforming growth factor-beta independent. High glucose reduced AMPK alpha-subunit theronine (Thr) 172 phosphorylation, which required Akt activation. Changes in AMP and ATP content could not fully account for high-glucose-induced reductions in AMPK phosphorylation. Metformin and 5-aminoimidazole-4-carboxamide-1beta-riboside (AICAR) increased AMPK phosphorylation, inhibited high-glucose stimulation of protein synthesis, and prevented high-glucose-induced changes in phosphorylation of 4E binding protein 1 and eukaryotic elongation factor 2. Expression of kinase-inactive AMPK further increased high-glucose-induced protein synthesis. Renal hypertrophy in rats with Type 1 diabetes was associated with reduction in AMPK phosphorylation and increased mTOR activity. In diabetic rats, metformin and AICAR increased renal AMPK phosphorylation, reversed mTOR activation, and inhibited renal hypertrophy, without affecting hyperglycemia. AMPK is a newly identified regulator of renal hypertrophy in diabetes.
Diabetes and high glucose (HG) increase the generation of NADPH oxidase-derived reactive oxygen species and induce apoptosis of glomerular epithelial cells (podocytes). Loss of podocytes contributes to albuminuria, a major risk factor for progression of kidney disease. Here, we show that HG inactivates AMP-activated protein kinase (AMPK), up-regulates Nox4, enhances NADPH oxidase activity, and induces podocyte apoptosis. Activation of AMPK blocked HG-induced expression of Nox4, NADPH oxidase activity, and apoptosis. We also identified the tumor suppressor protein p53 as a mediator of podocyte apoptosis in cells exposed to HG. Inactivation of AMPK by HG up-regulated the expression and phosphorylation of p53, and p53 acted downstream of Nox4. To investigate the mechanism of podocyte apoptosis in vivo, we used OVE26 mice, a model of type 1 diabetes. Glomeruli isolated from these mice showed decreased phosphorylation of AMPK and enhanced expression of Nox4 and p53. Pharmacologic activation of AMPK by 5-aminoimidazole-4-carboxamide-1-riboside in OVE26 mice attenuated Nox4 and p53 expression. Administration of 5-aminoimidazole-4-carboxamide-1-riboside also prevented renal hypertrophy, glomerular basement thickening, foot process effacement, and podocyte loss, resulting in marked reduction in albuminuria. Our results uncover a novel function of AMPK that integrates metabolic input to Nox4 and provide new insight for activation of p53 to induce podocyte apoptosis. The data indicate the potential therapeutic utility of AMPK activators to block Nox4 and reactive oxygen species generation and to reduce urinary albumin excretion in type 1 diabetes.One of the major early features of diabetic kidney disease is injury to glomerular epithelial cells or podocytes, which contribute to the increased urinary albumin losses and accelerated sclerosis of the glomerular microvascular bed (1). Podocyte injury manifests as phenotypic changes that range from foot process effacement and altered localization or abundance of specific slit diaphragm proteins to frank apoptosis with detachment of the cells from the glomerular basement membrane (GBM) 2 with decreased cell density (2-4). The mechanism(s) of podocyte depletion in diabetes are poorly understood.Expression of antioxidant enzymes in some animal models ameliorates diabetic kidney disease, thus establishing a role of reactive oxygen species (ROS) (5, 6). More recently, along with ROS generated from mitochondrial respiratory chains, NADPH oxidase-derived ROS have been shown to play a significant role in injury to various organs, including the kidney (2, 7). A number of homologs of the phagocyte NADPH oxidase catalytic subunit (Nox2) have been identified. These enzymes participate in a number of biological processes, including proliferation, migration, contraction, cytoskeletal organization, fibrosis, and apoptosis (8). Along with Nox2, Nox1 and Nox4 are abundantly expressed in the renal cortex (9). We showed that Nox4 is expressed in rat and mouse glomeruli and contributes to matrix ac...
Hyperglycemia induces a wide array of signaling pathways in the kidney that lead to hypertrophy and matrix expansion, eventually culminating in progressive kidney failure. High glucoseinduced reduction of the tumor suppressor protein phosphatase and tensin homolog deleted in chromosome 10 (PTEN) contributes to renal cell hypertrophy and matrix expansion. We identified microRNA-21 (miR-21) as the molecular link between high glucose and PTEN suppression. Renal cortices from OVE26 type 1 diabetic mice showed significantly elevated levels of miR-21 associated with reduced PTEN and increased fibronectin content. In renal mesangial cells, high glucose increased the expression of miR-21, which targeted the 3-UTR of PTEN mRNA to inhibit PTEN protein expression. Overexpression of miR-21 mimicked the action of high glucose, which included a reduction in PTEN expression and a concomitant increase in Akt phosphorylation. In contrast, expression of miR-21 Sponge, to inhibit endogenous miR-21, prevented down-regulation of PTEN and phosphorylation of Akt induced by high glucose. Interestingly, high glucose-stimulated miR-21 inactivated PRAS40, a negative regulator of TORC1. Finally, miR-21 enhanced high glucose-induced TORC1 activity, resulting in renal cell hypertrophy and fibronectin expression. Thus, our results identify a previously unrecognized function of miR-21 that is the reciprocal regulation of PTEN levels and Akt/TORC1 activity that mediate critical pathologic features of diabetic kidney disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.