How membrane receptors initiate signal transduction upon ligand binding is a matter of intense scrutiny. The T cell receptor complex (TCR-CD3) is composed of TCR alpha/beta ligand binding subunits bound to the CD3 subunits responsible for signal transduction. Although it has long been speculated that TCR-CD3 may undergo a conformational change, confirmation is still lacking. We present strong evidence that ligand engagement of TCR-CD3 induces a conformational change that exposes a proline-rich sequence in CD3 epsilon and results in recruitment of the adaptor protein Nck. This occurs earlier than and independently of tyrosine kinase activation. Finally, by interfering with Nck-CD3 epsilon association in vivo, we demonstrate that TCR-CD3 recruitment of Nck is critical for maturation of the immune synapse and for T cell activation.
A long-standing paradox in the study of T cell antigen recognition is that of the high specificity–low affinity T cell receptor (TCR)–major histocompatibility complex peptide (MHCp) interaction. The existence of multivalent TCRs could resolve this paradox because they can simultaneously improve the avidity observed for monovalent interactions and allow for cooperative effects. We have studied the stoichiometry of the TCR by Blue Native–polyacrylamide gel electrophoresis and found that the TCR exists as a mixture of monovalent (αβγɛδɛζζ) and multivalent complexes with two or more ligand-binding TCRα/β subunits. The coexistence of monovalent and multivalent complexes was confirmed by electron microscopy after label fracture of intact T cells, thus ruling out any possible artifact caused by detergent solubilization. We found that although only the multivalent complexes become phosphorylated at low antigen doses, both multivalent and monovalent TCRs are phosphorylated at higher doses. Thus, the multivalent TCRs could be responsible for sensing low concentrations of antigen, whereas the monovalent TCRs could be responsible for dose-response effects at high concentrations, conditions in which the multivalent TCRs are saturated. Thus, besides resolving TCR stoichiometry, these data can explain how T cells respond to a wide range of MHCp concentrations while maintaining high sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.