Selenium nanoparticles (SeNPs) are gaining importance in the field of medicine owing to their antibacterial and anticancer properties. SeNPs are biocompatible and non-toxic compared to the counterparts, selenite (SeO3 (-2)) and selenate (SeO4 (-2)). They can be synthesized by physical, chemical, and biological methods and have distinct bright orange-red color. Biogenic SeNPs are stable and do not aggregate owing to natural coating of the biomolecules. Various hypotheses have been proposed to describe the mechanism of microbial synthesis of SeNPs. It is primarily a two-step reduction process from SeO4 (-2) to SeO3 (-2) to insoluble elemental selenium (Se(0)) catalyzed by selenate and selenite reductases. Phenazine-1-carboxylic acid and glutathione are involved in selenite reduction. Se factor A (SefA) and metalloid reductase Rar A present on the surface of SeNPs confer stability to the nanoparticles. SeNPs act as potent chemopreventive and chemotherapeutic agents. Conjugation with antibiotics enhances their anticancer efficacy. These also have applications in nanobiosensors and environmental remediation.
Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.
dOuter membrane vesicles (OMVs) are continually released from a range of bacterial species. Numerous functions of OMVs, including the facilitation of horizontal gene transfer (HGT) processes, have been proposed. In this study, we investigated whether OMVs contribute to the transfer of plasmids between bacterial cells and species using Gram-negative Acinetobacter baylyi as a model system. OMVs were extracted from bacterial cultures and tested for the ability to vector gene transfer into populations of Escherichia coli and A. baylyi, including naturally transformation-deficient mutants of A. baylyi. Anti-double-stranded DNA (anti-dsDNA) antibodies were used to determine the movement of DNA into OMVs. We also determined how stress affected the level of vesiculation and the amount of DNA in vesicles. OMVs were further characterized by measuring particle size distribution (PSD) and zeta potential. Transmission electron microscopy (TEM) and immunogold labeling were performed using antifluorescein isothiocyanate (anti-FITC)-conjugated antibodies and anti-dsDNA antibodies to track the movement of FITC-labeled and DNA-containing OMVs. Exposure to OMVs isolated from plasmid-containing donor cells resulted in HGT to A. baylyi and E. coli at transfer frequencies ranging from 10 ؊6 to 10 ؊8 , with transfer efficiencies of approximately 10 3 and 10 2 per g of vesicular DNA, respectively. Antibiotic stress was shown to affect the DNA content of OMVs as well as their hydrodynamic diameter and zeta potential. Morphological observations suggest that OMVs from A. baylyi interact with recipient cells in different ways, depending on the recipient species. Interestingly, the PSD measurements suggest that distinct size ranges of OMVs are released from A. baylyi.
Effective targeting of mitochondria has emerged as an alternative strategy in cancer chemotherapy. However, considering mitochondria's crucial role in cellular energetics, metabolism and signaling, targeting mitochondria with small molecules would lead to severe side effects in cancer patients. Moreover, mitochondrial functions are highly dependent on other cellular organelles like nucleus. Hence, simultaneous targeting of mitochondria and nucleus could lead to more effective anticancer strategy. To achieve this goal, we have developed sub 200 nm particles from dual drug conjugates derived from direct tethering of mitochondria damaging drug (α- tocopheryl succinate) and nucleus damaging drugs (cisplatin, doxorubicin and paclitaxel). These dual drug conjugated nanoparticles were internalized into the acidic lysosomal compartments of the HeLa cervical cancer cells through endocytosis and induced apoptosis through cell cycle arrest. These nanoparticles damaged mitochondrial morphology and triggered the release of cytochrome c. Furthermore, these nanoparticles target nucleus to induce DNA damage, fragment the nuclear morphology and damage the cytoskeletal protein tubulin. Therefore, these dual drug conjugated nanoparticles can be successfully used as a platform technology for simultaneous targeting of multiple subcellular organelles in cancer cells to improve the therapeutic efficacy of the free drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.