Mutations in the gene coding for connexin26 (Cx26) is the most common cause of human nonsyndromic hereditary deafness. To investigate deafness mechanisms underlying Cx26 null mutations, we generated three independent lines of conditional Cx26 null mice. Cell differentiation and gross cochlear morphology at birth seemed normal. However, postnatal development of the organ of Corti was stalled as the tunnel of Corti and the Nuel's space were never opened. Cell degeneration was first observed in the Claudius cells around P8. Outer hair cell loss was initially observed around P13 at middle turn when inner hair cells were still intact. Massive cell death occurred in the middle turn thereafter and gradually spread to the basal turn, resulting in secondary degeneration of spiral ganglion neurons in the corresponding cochlear locations. These results demonstrated that Cx26 plays essential roles in postnatal maturation and homoeostasis of the organ of Corti before the onset of hearing.
Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1−/− mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0–P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner’s membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1−/− mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss.
We have shown previously that EM011, a synthetic compound, binds tubulin with a higher affinity than the founding compound, noscapine, without changing total microtubule polymer mass. Now we show that EM011 is potently effective against vinblastine-resistant human lymphoblastoid line CEM/VLB100 and its parental vinblastine-sensitive line CEM. The cytotoxicity is mediated by cell cycle arrest at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.