The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.Oceans cover approximately 71% of the Earth's surface and harbour most of the phylum diversity of the animal kingdom. Understanding marine biodiversity and its evolution remains a major challenge. The Pacific oyster C. gigas (Thunberg, 1793) is a marine bivalve belonging to the phylum Mollusca, which contains the largest number of described marine animal species 1 . Molluscs have vital roles in the functioning of marine, freshwater and terrestrial ecosystems, and have had major effects on humans, primarily as food sources but also as sources of dyes, decorative pearls and shells, vectors of parasites, and biofouling or destructive agents. Many molluscs are important fishery and aquaculture species, as well as models for studying neurobiology, biomineralization, ocean acidification and adaptation to coastal environments under climate change 2,3 . As the most speciose member of the Lophotrochozoa, phylum Mollusca is central to our understanding of the biology and evolution of this superphylum of protostomes.As sessile marine animals living in estuarine and intertidal regions, oysters must cope with harsh and dynamically changing environments. Abiotic factors such as temperature and salinity fluctuate wildly, and toxic metals and desiccation also pose serious challenges. Filter-feeding oysters face tremendous exposure to microbial pathogens. Oysters do have a notable physical line of defence against predation and desiccation in the formation of thick calcified shells, a key evolutionary innovation making molluscs a successful group. However, acidification of the world's oceans by uptake of anthropogenic carbon dioxide poses a potentially serious threat to this ancient adaptation 4 . Understanding biomineralization and molluscan shell formation is, thus, a major area of interest 5 . Crassostrea gigas is also an interesting model for developmental biology owing to its mosaic development with typical molluscan stages, including trochophore and veliger larvae and metamorphosis.A complete genome sequence of C. gigas would enable a more th...
BackgroundThe Pacific oyster, Crassostrea gigas, has developed special mechanisms to regulate its osmotic balance to adapt to fluctuations of salinities in coastal zones. To understand the oyster’s euryhaline adaptation, we analyzed salt stress effectors metabolism pathways under different salinities (salt 5, 10, 15, 20, 25, 30 and 40 for 7 days) using transcriptome data, physiology experiment and quantitative real-time PCR.ResultsTranscriptome data uncovered 189, 480, 207 and 80 marker genes for monitoring physiology status of oysters and the environment conditions. Three known salt stress effectors (involving ion channels, aquaporins and free amino acids) were examined. The analysis of ion channels and aquaporins indicated that 7 days long-term salt stress inhibited voltage-gated Na+/K+ channel and aquaporin but increased calcium-activated K+ channel and Ca2+ channel. As the most important category of osmotic stress effector, we analyzed the oyster FAAs metabolism pathways (including taurine, glycine, alanine, beta-alanine, proline and arginine) and explained FAAs functional mechanism for oyster low salinity adaptation. FAAs metabolism key enzyme genes displayed expression differentiation in low salinity adapted individuals comparing with control which further indicated that FAAs played important roles for oyster salinity adaptation. A global metabolic pathway analysis (iPath) of oyster expanded genes displayed a co-expansion of FAAs metabolism in C. gigas compared with seven other species, suggesting oyster’s powerful ability regarding FAAs metabolism, allowing it to adapt to fluctuating salinities, which may be one important mechanism underlying euryhaline adaption in oyster. Additionally, using transcriptome data analysis, we uncovered salt stress transduction networks in C. gigas.ConclusionsOur results represented oyster salt stress effectors functional mechanisms under salt stress conditions and explained the expansion of FAAs metabolism pathways as the most important effectors for oyster euryhaline adaptation. This study was the first to explain oyster euryhaline adaptation at a genome-wide scale in C. gigas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.