SUMMARY
The Cancer Genome Atlas Network recently catalogued recurrent genomic abnormalities in glioblastoma (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical and Mesenchymal subtypes and integrate multi-dimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define Classical, Mesenchymal, and Proneural, respectively. Gene signatures of normal brain cell types show a strong relation between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype with greatest benefit in Classical and no benefit in Proneural. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.
A powerful way to discover key genes playing causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here, we report high-resolution analyses of somatic copy-number alterations (SCNAs) from 3131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across multiple cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-κB pathway. We show that cancer cells harboring amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend upon expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in multiple cancer types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.