We previously demonstrated that the frequency of birth defects among children of residents of the Red River Valley (RRV), Minnesota, USA, was significantly higher than in other major agricultural regions of the state during the years 1989-1991, with children born to male pesticide applicators having the highest risk. The present, smaller cross-sectional study of 695 families and 1,532 children, conducted during 1997-1998, provides a more detailed examination of reproductive health outcomes in farm families ascertained from parent-reported birth defects. In the present study, in the first year of life, the birth defect rate was 31.3 births per 1,000, with 83% of the total reported birth defects confirmed by medical records. Inclusion of children identified with birth or developmental disorders within the first 3 years of life and later led to a rate of 47.0 per 1,000 (72 children from 1,532 live births). Conceptions in spring resulted in significantly more children with birth defects than found in any other season (7.6 vs. 3.7%). Twelve families had more than one child with a birth defect (n = 28 children). Forty-two percent of the children from families with recurrent birth defects were conceived in spring, a significantly higher rate than that for any other season. Three families in the kinships defined contributed a first-degree relative other than a sibling with the same or similar birth defect, consistent with a Mendelian inheritance pattern. The remaining nine families did not follow a Mendelian inheritance pattern. The sex ratio of children with birth defects born to applicator families shows a male predominance (1.75 to 1) across specific pesticide class use and exposure categories exclusive of fungicides. In the fungicide exposure category, normal female births significantly exceed male births (1.25 to 1). Similarly, the proportion of male to female children with birth defects is significantly lower (0.57 to 1; p = 0.02). Adverse neurologic and neurobehavioral developmental effects clustered among the children born to applicators of the fumigant phosphine (odds ratio [OR] = 2.48; confidence interval [CI], 1.2-5.1). Use of the herbicide glyphosate yielded an OR of 3.6 (CI, 1.3-9.6) in the neurobehavioral category. Finally, these studies point out that (a) herbicides applied in the spring may be a factor in the birth defects observed and (b) fungicides can be a significant factor in the determination of sex of the children of the families of the RRV. Thus, two distinct classes of pesticides seem to have adverse effects on different reproductive outcomes. Biologically based confirmatory studies are needed.
In the present effort, 144 pesticide applicators and 49 urban control subjects who reported no chronic disease were studied. Applicators provided records of the season's pesticides used by product, volumes, dates, and methods of application. Blood specimens for examination of hormone levels were obtained in summer and fall. In the herbicide-only applicator group, significant increases in testosterone levels in fall compared to summer and also elevated levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the fall were noted. With respect to fungicide use, in an earlier cross-sectional epidemiologic study, data demonstrated that historic fungicide use was associated with a significant alteration of the sex ratio of children borne to applicators. As before, among current study subjects it was noted that historic fungicide use was associated with increased numbers of girls being born. Lower mean total testosterone concentrations by quartile were also correlated with increased numbers of live-born female infants. A downward summer to fall seasonal shift in thyroid-stimulating hormone (TSH) concentrations occurred among applicators but not among controls. Farmers who had aerial application of fungicides to their land in the current season showed a significant shift in TSH values (from 1.75 to 1.11 mU/L). Subclinical hypothyroidism was noted in 5/144 applicators (TSH values >4.5 mU/L), but not in urban control subjects. Based on current and past studies, it was concluded that, in addition to pesticide exposure, individual susceptibility and perhaps economic factors may play a supporting role in the reported results.
ArticlesForest pesticide applicators constitute a unique pesticide use group. Aerial, mechanical-ground, and focal weed control by application of herbicides, in particular chlorophenoxy herbicides, yield diverse exposure scenarios. In the present work, we analyzed aberrations in G-banded chromosomes, reproductive hormone levels, and polymerase chain reaction-based V(D)J rearrangement frequencies in applicators whose exposures were mostly limited to chlorophenoxy herbicides. Data from appliers where chlorophenoxy use was less frequent were also examined. The biomarker outcome data were compared to urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D) obtained at the time of maximum 2,4-D use. Further comparisons of outcome data were made to the total volume of herbicides applied during the entire pesticide-use season.Twenty-four applicators and 15 minimally exposed foresters (control) subjects were studied. Categorized by applicator method, men who used a hand-held, backpack sprayer in their applications showed the highest average level (453.6 ppb) of 2,4-D in urine. Serum luteinizing hormone (LH) values were correlated with urinary 2,4-D levels, but follicle-stimulating hormone and free and total testosterone were not. At the height of the application season; 6/7 backpack sprayers, 3/4 applicators who used multinozzle mechanical (boom) sprayers, 4/8 aerial applicators, and 2/5 skidder-radiarc (closed cab) appliers had two or more V(D)J region rearrangements per microgram of DNA. Only 5 of 15 minimally exposed (control) foresters had two or more rearrangements, and 3 of these 5 subjects demonstrated detectable levels of 2,4-D in the urine. Only 8/24 DNA samples obtained from the exposed group 10 months or more after their last chlorophenoxy use had two rearrangements per microgram of DNA, suggesting that the exposure-related effects observed were reversible and temporary. Although urinary 2,4-D levels were not correlated with chromosome aberration frequency, chromosome aberration frequencies were correlated with the total volume of herbicides applied, including products other than 2,4-D. In summary, herbicide applicators with high urinary levels of 2,4-D (backpack and boom spray applications) exhibited elevated LH levels. They also exhibited altered genomic stability as measured by V(D)J rearrangement frequency, which appears reversible months after peak exposure. Though highly detailed, the limited sample size warrants cautious interpretation of the data. Key words: 2,4-D, foresters, reproductive hormones, V(D)J rearrangements. Environ Health Perspect 109:495-500 (2001). [Online 9 May 2001] http://ehpnet1.niehs.nih.gov/docs/2001/109p495-500garry/abstract.html
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.