Strains of the species Komagataella phaffii are the most frequently used “Pichia pastoris” strains employed for recombinant protein production as well as studies on peroxisome biogenesis, autophagy and secretory pathway analyses. Genome sequencing of several different P. pastoris strains has provided the foundation for understanding these cellular functions in recent genomics, transcriptomics and proteomics experiments. This experimentation has identified mistakes, gaps and incorrectly annotated open reading frames in the previously published draft genome sequences. Here, a refined reference genome is presented, generated with genome and transcriptome sequencing data from multiple P. pastoris strains. Twelve major sequence gaps from 20 to 6000 base pairs were closed and 5111 out of 5256 putative open reading frames were manually curated and confirmed by RNA-seq and published LC-MS/MS data, including the addition of new open reading frames (ORFs) and a reduction in the number of spliced genes from 797 to 571. One chromosomal fragment of 76 kbp between two previous gaps on chromosome 1 and another 134 kbp fragment at the end of chromosome 4, as well as several shorter fragments needed re-orientation. In total more than 500 positions in the genome have been corrected. This reference genome is presented with new chromosomal numbering, positioning ribosomal repeats at the distal ends of the four chromosomes, and includes predicted chromosomal centromeres as well as the sequence of two linear cytoplasmic plasmids of 13.1 and 9.5 kbp found in some strains of P. pastoris.
Cardiovascular disease remains the leading cause of death in renal transplant recipients, but the underlying causative mechanisms for this important problem remain elusive. Recent work has indicated that qualitative alterations of HDL affect its functional and compositional properties in ESRD. Here, we systematically analyzed HDL from stable renal transplant recipients, according to graft function, and from patients with ESRD to determine whether structural and functional properties of HDL remain dysfunctional after renal transplantation. Cholesterol acceptor capacity and antioxidative activity, representing two key cardioprotective mechanisms of HDL, were profoundly suppressed in kidney transplant recipients independent of graft function and were comparable with levels in patients with ESRD. Using a mass spectroscopy approach, we identified specific remodeling of transplant HDL with highly enriched proteins, including a-1 microglobulin/bikunin precursor, pigment epithelium-derived factor, surfactant protein B, and serum amyloid A. In conclusion, this study demonstrates that HDL from kidney recipients is uniquely altered at the molecular and functional levels, indicating a direct pathologic role of HDL that could contribute to the substantial cardiovascular risk in the transplant population.
Homology and similarity based approaches are most widely used for the identification of new enzymes for biocatalysis. However, they are not suitable to find truly novel scaffolds with a desired function and this averts options and diversity. Hydroxynitrile lyases (HNLs) are an example of non-homologous isofunctional enzymes for the synthesis of chiral cyanohydrins. Due to their convergent evolution, finding new representatives is challenging. Here we show the discovery of unique HNL enzymes from the fern Davallia tyermannii by coalescence of transcriptomics, proteomics and enzymatic screening. It is the first protein with a Bet v1-like protein fold exhibiting HNL activity, and has a new catalytic center, as shown by protein crystallography. Biochemical properties of D. tyermannii HNLs open perspectives for the development of a complementary class of biocatalysts for the stereoselective synthesis of cyanohydrins. This work shows that systematic integration of -omics data facilitates discovery of enzymes with unpredictable sequences and helps to extend our knowledge about enzyme diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.