BackgroundStargardt disease (SD) is characterized by the accumulation of the age-pigment lipofuscin in the retinal pigment epithelium (RPE) and subsequent neuroretinal degeneration. The disease leads to vision loss early in life. Here, we investigate age-dependent ultrastructural changes in three SD mouse models: albino Abca4-/- and pigmented Abca4-/- and Abca4-/-.Rdh8-/- mice. Since we found indications for oxidative stress primarily in albino SD mice, we tested RPE melanin for its antioxidative capabilities.MethodsSD mouse eyes were investigated by light, fluorescence and electron microscopy and were compared to the respective albino and pigmented wild type mice and to a human donor SD eye. To confirm the role of RPE melanin in scavenging oxidative stress, melanin from S. officinalis as a standard and porcine RPE were tested for their capability to quench superoxide anions.ResultsHistological alterations indicative of oxidative stress and/or lysosomal dysfunction were present in albino Abca4-/- and Abca4-/-.Rdh8-/- mice. Retinal damage, such as inner segment rupture and pyknotic or free photoreceptor nuclei in the subretinal space and RPE vacuolization were exclusively found in albino Abca4-/- mice. Shortened and disorganized photoreceptor outer segments and dead RPE cells were found in albino Abca4-/- and Abca4-/-.Rdh8-/- mice, with earlier onset in albino Abca4-/- mice. Undegraded phagosomes and lipofuscin accumulation were present in the RPE of all three SD strains, but numbers were highest in Abca4-/-.Rdh8-/- mice. Lipofuscin morphology differed between SD strains: (melano-)lipofuscin granules in pigmented Abca4-/- mice had a homogenous electron density and sharp demarcations, while lipofuscin in albino Abca4-/- mice had a flocculent electron density and often lacked a surrounding membrane, indicating loss of lysosomal integrity. Young Abca4-/-.Rdh8-/- mice showed (melano-)lipofuscin granules with homogenous electron density, while in aged animals granules with flocculent electron density predominated. Both strains of pigmented SD mice had melanolipofuscin clusters as found in the human SD eye. Like melanin from S. officinalis, porcine RPE melanin can also quench superoxide anions.DiscussionThe presented pathologies in albino Abca4-/- and Abca4-/-.Rdh8-/- mice suggest oxidative stress and/or lysosomal dysfunction within the RPE. Since albino Abca4-/- mice have the earliest onset and severest damage and as absence of melanin and also melanin turnover with age are known to diminish RPEs anti-oxidative properties, we assume that RPE melanin plays a role in SD related damages. A lack of pathology in pigmented Abca4-/- mice due to lower stress levels as compared to the Abca4-/-.Rdh8-/- mice underlines this hypothesis. It is also supported by the finding that RPE melanin can quench superoxide anions. We therefore suppose that RPE melanin is important in retinal health and we discuss its role as an oxidative stress scavenger.
BackgroundDysregulation of the PI3Kinase/AKT pathway is involved in the pathogenesis of many human malignancies. In acute leukemia, the AKT pathway is frequently activated, however mutations in the PI3K/AKT pathway are uncommon. In some cases, constitutive AKT activation can be linked to gain-of-function tyrosine kinase (TK) mutations upstream of the PI3K/AKT pathway. Inhibitors of the PI3K/AKT pathway are attractive candidates for cancer drug development, but so far clinical efficacy of PI3K inhibitors against various neoplasms has been moderate. Furthermore, specific MTORC1 inhibitors, acting downstream of AKT, have the disadvantage of activating AKT via feed-back mechanisms. We now evaluated the antitumor efficacy of NVP-BGT226, a novel dual pan-PI3K and MTORC1/2 inhibitor, in acute leukemia.MethodsNative leukemia blasts were stained to analyze for AKT phosphorylation levels on a flow cytometer. Efficacy of NVP-BGT226 in comparison to a second dual inhibitor, NVP-BEZ235, was determined with regard to cellular proliferation, autophagy, cell cycle regulation and induction of apoptosis in in vitro and ex vivo cellular assays as well as on the protein level. An isogenic AKT-autoactivated Ba/F3 model, different human leukemia cell lines as well as native leukemia patient blasts were studied. Isobologram analyses were set up to calculate for (super) additive or antagonistic effects of two agents.ResultsWe show, that phosphorylation of AKT is frequently augmented in acute leukemia. NVP-BGT226 as well as NVP-BEZ235 profoundly and globally suppress AKT signaling pathways, which translates into potent antiproliferative effects. Furthermore, NVP-BGT226 has potent proapoptotic effects in vitro as well as in ex vivo native blasts. Surprisingly and in contrast, NVP-BEZ235 leads to a profound G1/G0 arrest preventing significant induction of apoptosis. Combination with TK inhibitors, which are currently been tested in the treatment of acute leukemia subtypes, overcomes cell cycle arrest and results in (super)additive proapoptotic effects for NVP-BGT226 – but also for NVP-BEZ235. Importantly, mononuclear donor cells show lower phospho-AKT expression levels and consequently, relative insensitivity towards dual PI3K-MTORC1/2 inhibition.ConclusionsOur data suggest a favorable antileukemic profile for NVP-BGT226 compared to NVP-BEZ235 – which provides a strong rationale for clinical evaluation of the dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia.
Background Apoptosis-stimulating Protein of TP53-2 ( ASPP2 ) is a tumor suppressor enhancing TP53-mediated apoptosis via binding to the TP53 core domain. TP53 mutations found in cancers disrupt ASPP2 binding, arguing for an important role of ASPP2 in TP53-mediated tumor suppression. We now identify an oncogenic splicing variant, ASPP2κ , with high prevalence in acute leukemia. Methods An mRNA screen to detect ASPP2 splicing variants was performed and ASPP2κ was validated using isoform-specific PCR approaches. Translation into a genuine protein isoform was evaluated after establishing epitope-specific antibodies. For functional studies cell models with forced expression of ASPP2κ or isoform-specific ASPP2κ -interference were created to evaluate proliferative, apoptotic and oncogenic characteristics of ASPP2κ . Findings Exon skipping generates a premature stop codon, leading to a truncated C-terminus, omitting the TP53-binding sites. ASPP2κ translates into a dominant-negative protein variant impairing TP53-dependent induction of apoptosis. ASPP2κ is expressed in CD34+ leukemic progenitor cells and functional studies argue for a role in early oncogenesis, resulting in perturbed proliferation and impaired induction of apoptosis, mitotic failure and chromosomal instability (CIN) – similar to TP53 mutations. Importantly, as expression of ASPP2κ is stress-inducible it defines a novel class of dynamic oncogenes not represented by genomic mutations. Interpretation Our data demonstrates that ASPP2κ plays a distinctive role as an antiapoptotic regulator of the TP53 checkpoint, rendering cells to a more aggressive phenotype as evidenced by proliferation and apoptosis rates – and ASPP2 κ expression results in acquisition of genomic mutations, a first initiating step in leukemogenesis. We provide proof-of-concept to establish ASPP2κ as a clinically relevant biomarker and a target for molecule-defined therapy. Fund Unrestricted grant support from the Wilhelm Sander Foundation for Cancer Research, the IZKF Program of the Medical Faculty Tübingen, the Brigitte Schlieben-Lange Program and the Margarete von Wrangell Program of the State Ministry Baden-Wuerttemberg for Science, Research and Arts and the Athene Program of the excellence initiative of the Eberhard-Karls University, Tübingen.
BackgroundIt has been previously demonstrated in several cancer models, that Dronabinol (THC) may have anti-tumor activity – however, controversial data exists for acute leukemia. We have anecdotal evidence that THC may have contributed to disease control in a patient with acute undifferentiated leukemia.MethodsTo test this hypothesis, we evaluated the antileukemic efficacy of THC in several leukemia cell lines and native leukemia blasts cultured ex vivo. Expression analysis for the CB1/2 receptors was performed by Western immunoblotting and flow cytometry. CB-receptor antagonists as well as a CRISPR double nickase knockdown approach were used to evaluate for receptor specificity of the observed proapoptotic effects.ResultsMeaningful antiproliferative as well as proapoptotic effects were demonstrated in a subset of cases – with a preference of leukemia cells from the lymphatic lineage or acute myeloid leukemia cells expressing lymphatic markers. Induction of apoptosis was mediated via CB1 as well as CB2, and expression of CB receptors was a prerequisite for therapy response in our models. Importantly, we demonstrate that antileukemic concentrations are achievable in vivo.ConclusionOur study provides rigorous data to support clinical evaluation of THC as a low-toxic therapy option in a well defined subset of acute leukemia patients.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-2029-8) contains supplementary material, which is available to authorized users.
The purpose of this study was to measure the spatially varying 31P MR signals in global and regional ischemic injury in the isolated, perfused rat heart. Chronic myocardial infarcts were induced by occluding the left anterior descending coronary artery eight weeks before the MR examination. The effects of acute global low-flow ischemia were observed by reducing the perfusate flow. Chemical shift imaging (CSI) with three spatial dimensions was used to obtain 31P spectra in 54-microl voxels. Multislice 1H imaging with magnetization transfer contrast enhancement provided anatomical information. In normal hearts (n = 8), a homogeneous distribution of high-energy phosphate metabolites (HEP) was found. In chronic myocardial infarction (n = 6), scar tissue contained negligible amounts of HEP, but their distribution in residual myocardium was uniform. The size of the infarcted area could be measured from the metabolic images; the correlation of infarct sizes determined by histology and 31P MR CSI was excellent (P < 0.006). In global low-flow ischemia (n = 8), changes of HEP showed substantial regional heterogeneity. Three-dimensional 31P MR CSI should yield new insights into the regionally distinct metabolic consequences of various forms of myocardial injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.