Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N = 100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean = 30.7, SEM = 2) decreased and IL-6 levels (mean = 4.4, SEM = 1) increased with age as did marrow fat (mean = 1.2 mm fat/g, SEM = 0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive.
The purpose of this study was to assess the inflammatory nature of obesity and its effect on blood and bone marrow endothelial cell populations. Obese patients (BMI ≥30) had significantly higher concentrations of the inflammatory marker C‐reactive protein (CRP) (P = 0.03) and lower concentrations of the anti‐inflammatory cytokine interleukin‐10 (IL‐10) (P = 0.05). This cytokine profile is consistent with obesity being an inflammatory condition and is further supported by the significant correlation between total white blood cell count and BMI (r = 0.15; P = 0.035). High BMI was associated with significantly lower numbers of early endothelial cells (CD45−/CD34+) in the bone marrow (r = −0.20; P = 0.0068). There was also a significant inverse correlation between BMI and a more mature endothelial cell phenotype (CD45−/31+) in the blood (r = −0.17; P = 0.02). In addition, there was a significant correlation between BMI‐ and endothelial‐related cells of hematopoietic origin (CD133+/VEGFR‐2+) in the bone marrow (r = −0.26; P = 0.0007). Patients with higher plasma IL‐10 and insulin‐like growth factor (IGF) concentrations had higher numbers of endothelial phenotypes in the bone marrow suggesting a protective effect of these anti‐inflammatory cytokines. In conclusion, this work confirms the inflammatory nature of obesity and is the first to report that obesity is associated with reduced endothelial cell numbers in the bone marrow of humans. These effects of obesity may be a potential mechanism for impaired tissue repair in obese patients.
Identification of mouse cell lines with properties of primary multipotential mesenchymal stromal cells (MSC) is required to facilitate the use of mouse models for evaluation of mechanisms in bone formation, hematopoiesis and cellular therapies for regenerative medicine. Primary murine MSC vary between strains, are difficult to grow in vitro and have inconsistent properties. The main aim of the study was to establish OMA-AD cells as an appropriate model system to conduct studies on MSC, bone formation and hematopoiesis. OMA-AD cells were isolated by differential trypsinization of C57BL/6J mouse bone marrow (BM) cells. The cells were then repassaged, cloned and characterized. OMA-AD cells were immortal and non-tumorigenic, differentiated readily to all mesenchymal cell types including bone, supported mouse and human hematopoiesis and were immunosuppressive. Our results demonstrated that OMA-AD cells possessed the properties of primary MSC. In addition, these cells grew readily and consistently, thereby facilitating future studies of bone formation, hematopoiesis and mesenchymal cells for regenerative medicine
This study enumerated CD45hi/CD34+ and CD45hi/CD133+ human hematopoietic stem cells (HSC) and granulocyte-monocyte colony forming (GM-CFC) progenitor cells in blood and trochanteric and femoral bone marrow in 233 individuals. Stem cell frequencies were determined by multi-parameter flow cytometry employing an internal control to determine the intrinsic variance of the assays. Progenitor cell frequency was determined using a standard colony assay technique. The frequency of outliers from undetermined methodological causes was highest for blood but less than 5% for all values. The frequency of CD45hi/CD133+ cells correlated highly with the frequency of CD45hi/CD34+ cells in trochanteric and femoral bone marrow. The frequency of these HSC populations in trochanteric and femoral bone marrow rose significantly with age. In contrast, there was no significant trend of either of these cell populations with age in the blood. Trochanteric marrow GM-CFC progenitor cells showed no significant trends with age, but femoral marrow GM-CFC trended downward with age, potentially because of the reported conversion of red marrow at this site to fat with age. Hematopoietic stem and progenitor cells exhibited changes in frequencies with age that differed between blood and bone marrow. We previously reported that side population (SP) multipotential HSC, that include the precursors of CD45hi/CD133+ and CD45hi/CD34+, decline with age. Potentially the increases in stem cell frequencies in the intermediate compartment between SP and GM progenitor cells observed in this study represent a compensatory increase for the loss of more potent members of the HSC hierarchy.
IntroductionBreast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous.MethodsCells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis.ResultsThe proportion of cells expressing CD44highCD24low/neg, side population (SP) cells, ALDH1+, CD49fhigh, CD133high, and CD34high differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1+, CD34low, and CD49fhigh suggested properties of transit amplifying cells. Colony formation was higher from ALDH1− and non-SP cells than ALDH1+ and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than “non-stem” cells. Fewer SP cells were needed to form tumors than ALDH1+ cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined.ConclusionsThese data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.