In human monocyte‐derived macrophages, the MCPIP gene (monocyte chemoattractant protein‐induced protein) is strongly activated by interleukin‐1β (IL‐1β). Using bioinformatics, a PIN domain was identified, spanning amino acids 130‐280; such domains are known to possess structural features of RNases. Recently, RNase properties of MCPIP were confirmed on transcripts coding for interleukins IL‐6 and IL‐12p40. Here we present evidence that siRNA‐mediated inhibition of the MCPIP gene expression increases the level of the IL‐1β transcript in cells stimulated with LPS, whereas overexpression of MCPIP exerts opposite effects. Cells with an increased level of wild‐type MCPIP showed lower levels of IL‐1β mRNA. However, this was not observed when mutant forms of MCPIP, either entirely lacking the PIN domain or with point mutations in this domain, were used. The results of experiments with actinomycin D indicate that lower levels of IL‐1β mRNA are due to shortening of the IL‐1β transcript half‐life, and are not related to the presence of AU‐rich elements in the 3′ UTR. The interaction of the MCPIP with transcripts of both IL‐1β and MCPIP observed in an RNA immunoprecipitation assay suggests that this novel RNase may be involved in the regulation of expression of several genes.
This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).
BackgroundInfinium HumanMethylation 450 BeadChip Arrays by Illumina (Illumina HM450K) are among the most popular CpG microarray platforms widely used in biological and medical research. Several recent studies highlighted the potentially confounding impact of the genomic variation on the results of methylation studies performed using Illumina’s Infinium methylation probes. However, the complexity of SNPs impact on the methylation level measurements (β values) has not been comprehensively described.ResultsIn our comparative study of European and Asian populations performed using Illumina HM450K, we found that the majority of Infinium probes, which differentiated two examined groups, had SNPs in their target sequence. Characteristic tri-modal or bi-modal patterns of β values distribution among individual samples were observed for CpGs with SNPs in the first and second position, respectively. To better understand how SNPs affect methylation readouts, we investigated their impact in the context of SNP position and type, and of the Illumina probe type (Infinium I or II).ConclusionsOur study clearly demonstrates that SNP variation existing in the genome, if not accounted for, may lead to false interpretation of the methylation signal differences suggested by some of the Illumina Infinium probes. In addition, it provides important practical clues for discriminating between differences due to the methylation status and to the genomic polymorphisms, based on the inspection of methylation readouts in individual samples. This approach is of special importance when Illumina Infinium assay is used for any comparative population studies, whether related to cancer, disease, ethnicity where SNP frequencies differentiate the studied groups.
BackgroundRecently high-throughput sequencing (HTS) using next generation sequencing techniques became useful in digital gene expression profiling.Our study introduces analysis options for HTS data based on mapping to miRBase or counting and grouping of identical sequence reads. Those approaches allow a hypothesis free detection of miRNA differential expression.MethodsWe compare our results to microarray and qPCR data from one set of RNA samples. We use Illumina platforms for microarray analysis and miRNA sequencing of 20 samples from benign follicular thyroid adenoma and malignant follicular thyroid carcinoma. Furthermore, we use three strategies for HTS data analysis to evaluate miRNA biomarkers for malignant versus benign follicular thyroid tumors.ResultsHigh correlation of qPCR and HTS data was observed for the proposed analysis methods. However, qPCR is limited in the differential detection of miRNA isoforms. Moreover, we illustrate a much broader dynamic range of HTS compared to microarrays for small RNA studies. Finally, our data confirm hsa-miR-197-3p, hsa-miR-221-3p, hsa-miR-222-3p and both hsa-miR-144-3p and hsa-miR-144-5p as potential follicular thyroid cancer biomarkers.ConclusionsCompared to microarrays HTS provides a global profile of miRNA expression with higher specificity and in more detail. Summarizing of HTS reads as isoform groups (analysis pipeline B) or according to functional criteria (seed analysis pipeline C), which better correlates to results of qPCR are promising new options for HTS analysis. Finally, data opens future miRNA research perspectives for HTS and indicates that qPCR might be limited in validating HTS data in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.