• Antimicrobial CD8 ϩ MAIT cells are activated, exhausted, and progressively and persistently depleted during chronic HIV-1 infection.• This decline in MAIT cell level and function may seriously impair the ability to mount immune responses to bacterial and fungal pathogens. IntroductionHIV-1 infection is associated with a range of pathologic changes to the immune system, including systemic immune activation, CD4 T-cell loss and CD8 T-cell expansion. The state of broad and persistent immune activation develops early during infection, 1,2 contributes to the rapid aging of the immune system seen during chronic progressive HIV-1 disease, and persists despite effective long-term virologic suppression by combination antiretroviral therapy (cART; reviewed in by Deeks, 3 Appay et al, 4 and Desai and Landay 5 ). These pathologic processes lead to the progressive destruction of lymphoid organs and loss of CD4 helper T cells. 6,7 Already during primary infection, HIV-1 depletes intestinal CD4 T cells and disrupts the structure and function of the intestinal immune system. [8][9][10][11][12][13] One consequence of this is increased permeability of the intestinal epithelium with translocation of microbial products into the local tissue, the portal circulation, the liver and eventually into systemic circulation. 14 This process may continue despite effective long-term cART. 15,16 Disruption of immune homeostasis and barrier function at the mucosa is a considerable challenge for the host immune system because the microbial proteins, carbohydrates, and lipids form a range of antigens that will engage innate as well as adaptive immune mechanisms (reviewed by Brenchley and Douek 17 ). Despite considerable advances in the treatment and management of HIV-1 disease, certain infections still present a significant clinical challenge particularly among HIV-infected individuals who are diagnosed at advanced stages, those who lack access to antiretroviral therapy, and those who cannot maintain adherence to therapy and clinical care. [18][19][20] This includes an increased risk of developing bacterial pneumonia even in HIV-1-infected patients with relatively normal CD4 counts, 21 indicating that impaired CD4 T-cell independent control of certain infections still exists even in the context of treated HIV-1 disease. Mucosal-associated invariant T (MAIT) cells are a relatively recently discovered subset of unconventional, innate-like T cells that are highly abundant in mucosal tissues, liver, and peripheral blood. [22][23][24][25] Human MAIT cells express an invariant T-cell receptor (TCR) carrying the V␣7.2 ␣-chain segment, a restricted V repertoire (V2 or V13), and recognize antigens in complex with the evolutionarily conserved MHC-Ib-related protein (MR1). 24,25 In addition to the V␣7.2 TCR segment, MAIT cells are defined by Submitted July 27, 2012; accepted November 26, 2012. Prepublished online as Blood First Edition paper, December 13, 2012; DOI 10.1182 DOI 10. /blood-2012 The online version of this article contains a data suppleme...
A low CD4/CD8 ratio in elderly HIV-uninfected adults is associated with increased morbidity and mortality. A subset of HIV-infected adults receiving effective antiretroviral therapy (ART) fails to normalize this ratio, even after they achieve normal CD4+ T cell counts. The immunologic and clinical characteristics of this clinical phenotype remain undefined. Using data from four distinct clinical cohorts and three clinical trials, we show that a low CD4/CD8 ratio in HIV-infected adults during otherwise effective ART (after CD4 count recovery above 500 cells/mm3) is associated with a number of immunological abnormalities, including a skewed T cell phenotype from naïve toward terminally differentiated CD8+ T cells, higher levels of CD8+ T cell activation (HLADR+CD38+) and senescence (CD28− and CD57+CD28−), and higher kynurenine/tryptophan ratio. Changes in the peripheral CD4/CD8 ratio are also reflective of changes in gut mucosa, but not in lymph nodes. In a longitudinal study, individuals who initiated ART within six months of infection had greater CD4/CD8 ratio increase compared to later initiators (>2 years). After controlling for age, gender, ART duration, nadir and CD4 count, the CD4/CD8 ratio predicted increased risk of morbidity and mortality. Hence, a persistently low CD4/CD8 ratio during otherwise effective ART is associated with increased innate and adaptive immune activation, an immunosenescent phenotype, and higher risk of morbidity/mortality. This ratio may prove useful in monitoring response to ART and could identify a unique subset of individuals needed of novel therapeutic interventions.
A rare subset of human immunodeficiency virus (HIV)-infected individuals maintains undetectable HIV RNA levels without therapy (“elite controllers”). To clarify the role of T-cell responses in mediating virus control, we compared HLA class I polymorphisms and HIV-specific T-cell responses among a large cohort of elite controllers (HIV-RNA < 75 copies/ml), “viremic” controllers (low-level viremia without therapy), “noncontrollers” (high-level viremia), and “antiretroviral therapy suppressed” individuals (undetectable HIV-RNA levels on antiretroviral therapy). The proportion of CD4+ and CD8+ T cells that produce gamma interferon (IFN-γ) and interleukin-2 (IL-2) in response to Gag and Pol peptides was highest in the elite and viremic controllers (P < 0.0001). Forty percent of the elite controllers were HLA-B*57 compared to twenty-three percent of viremic controllers and nine percent of noncontrollers (P < 0.001). Other HLA class I alleles more common in elite controllers included HLA-B*13, HLA-B*58, and HLA-B*81 (P < 0.05 for each). Within elite and viremic controller groups, those with protective class I alleles had higher frequencies of Gag-specific CD8+ T cells than those without these alleles (P = 0.01). Noncontrollers, with or without protective alleles, had low-level CD8+ responses. Thus, certain HLA class I alleles are enriched in HIV controllers and are associated with strong Gag-specific CD8+IFN-γ+IL-2+ T cells. However, the absence of evidence of T cell-mediated control in many controllers suggests the presence of alternative mechanisms for viral control in these individuals. Defining mechanisms for virus control in “non-T-cell controllers” might lead to insights into preventing HIV transmission or preventing virus replication.
There exists a unique group of persons who are able to durably control HIV in the absence of therapy. The mechanisms of control in these persons remain poorly defined. In this study, we examined CD8 ؉ T-cell responses in blood and rectal mucosa from 17 "elite controllers" (viral load < 75 copies/mL), 11 "viremic controllers" (75-2000 copies/mL), 14 noncontrollers (> 10 000 copies/mL), and 10 antiretroviral-treated persons (< 75 copies/mL). Production of interferon-␥, interleukin-
Although the gut-associated lymphoid tissue (GALT) is an important early site for human immunodeficiency virus (HIV) replication and severe CD4؉ T-cell depletion, our understanding is limited about the restoration of the gut mucosal immune system during highly active antiretroviral therapy (HAART). We evaluated the kinetics of viral suppression, CD4؉ T-cell restoration, gene expression, and HIV-specific CD8 ؉ T-cell responses in longitudinal gastrointestinal biopsy and peripheral blood samples from patients initiating HAART during primary HIV infection (PHI) or chronic HIV infection (CHI) using flow cytometry, real-time PCR, and DNA microarray analysis. Viral suppression was more effective in GALT of PHI patients than CHI patients during HAART. Mucosal CD4 ؉ T-cell restoration was delayed compared to peripheral blood and independent of the time of HAART initiation. Immunophenotypic analysis showed that repopulating mucosal CD4 ؉ T cells were predominantly of a memory phenotype and expressed CD11␣, ␣ E  7 , CCR5, and CXCR4. Incomplete suppression of viral replication in GALT during HAART correlated with increased HIV-specific CD8 ؉ T-cell responses. DNA microarray analysis revealed that genes involved in inflammation and cell activation were up regulated in patients who did not replenish mucosal CD4 ؉ T cells efficiently, while expression of genes involved in growth and repair was increased in patients with efficient mucosal CD4 ؉ T-cell restoration. Our findings suggest that the discordance in CD4 ؉ T-cell restoration between GALT and peripheral blood during therapy can be attributed to the incomplete viral suppression and increased immune activation and inflammation that may prevent restoration of CD4 ؉ T cells and the gut microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.