The sexually reproducing stick insects Bacillus rossius and B. grandii are sharply differentiated in terms of allozyme gene alleles; B. atticus is a polyclonal automictic parthenogen sister to B. grandii grandii. Although well differentiated for coding genes, these hybridize to produce diploid (B. whitei=rossius/grandii) or triploid (B. lynceorum=rossius/grandii/atticus) clonal forms which reproduce apomictically. Allozyme analyses of unisexual Bacillus clearly establish their relationships from bisexual ancestor species as does the existence in all of them of several clones (especially in B. atticus) whose egg maturation allows regular recombination to occur. Bacillus taxa share the Bag320 satellite DNA family within different reproductive frameworks, allowing satellite variant homogenization to be uncoupled from fixation. The nested analysis of monomers reveals different patterns of sequence diversity: sexual reproduction includes both homogenization and variant fixation, whereas the slowing of molecular turnover processes and the absence of syngamy in the parthenogens realizes a similar range of sequence diversity at the level of the individual and supra‐individual, but with no fixation. On the other hand, the actual values of sequence diversity appear mostly linked to species traits – range size, copy number of repeats, number of hybrid crosses – and possibly transposon activity, rather than to the reproductive mode. In addition, the mitochondrial genome reveals a comparable level of cox2 sequence variability in sexual and parthenogenetic taxa, thus adding to clonal variability. From Bacillus and other stick insect complexes, an overall picture of genomic diversification of parthenogens is therefore beginning to emerge. To define those animals that reproduce by non‐canonical sexual modes (i.e. parthenogenesis, hybridogenesis), but make use of egg and meiotic mechanisms, the term meta‐sexual is proposed. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society, 2003, 79, 137–150.
Tungiasis is a parasitic disease of humans and animals caused by fleas (Siphonaptera) belonging to the genus Tunga. Two species, Tunga penetrans (L.) and Tunga trimamillata, out of 10 described to date, are known to affect man or domestic animals; the other eight are exclusive to a few species of wild mammals. Tunga penetrans and T. trimamillata originated from Latin America, although the first species is also found in sub-Saharan Africa (between 20 degrees N and 25 degrees S). Hundreds of millions of people are at risk of infection in more than 70 nations, mostly in developing countries. The second species has been reported only in Ecuador and Peru. Males and non-fertilized females of Tunga are haematophagous ectoparasites; pregnant females penetrate the skin where, following dilatation of the abdomen, they increase enormously in size (neosomy) and cause inflammatory and ulcerative processes of varying severity. The importance of Tunga infection in humans concerns its frequent localization in the foot, which sometimes causes very serious difficulty in walking, thereby reducing the subject's ability to work and necessitating medical and surgical intervention. Tungiasis in domestic animals can be responsible for economic losses resulting from flea-induced lesions and secondary infections. Because tungiasis represents a serious problem for tropical public health and because of the recent description of a new species (Tunga trimamillata), it seems appropriate to review current knowledge of the morphology, molecular taxonomy, epidemiology, pathology, treatment and control of sand fleas of the genus Tunga.
The ubiquity of satellite DNA (satDNA) sequences has raised much controversy over the abundance of divergent monomer variants and the long-time nucleotide sequence stability observed for many satDNA families. In this work, we describe the satDNA BIV160, characterized in nine species of the three main bivalve clades (Protobranchia, Pteriomorphia and Heteroconchia). BIV160 monomers are similar in repeat size and nucleotide sequence to satDNAs described earlier in oysters and in the clam Donax trunculus. The broad distribution of BIV160 satDNA indicates that similar variants existed in the ancestral bivalve species that lived about 540 million years ago; this makes BIV160 the most ancient satDNA described so far. In the species examined, monomer variants are distributed in quite a complex pattern. This pattern includes (i) species characterized by a specific group of variants, (ii) species that share distinct group(s) of variants and (iii) species with both specific and shared types. The evolutionary scenario suggested by these data reconciles sequence uniformity in homogenization-maintained satDNA arrays with the genomic richness of divergent monomer variants formed by diversification of the same ancestral satDNA sequence. Diversified repeats can continue to evolve in a non-concerted manner and behave as independent amplification-contraction units in the framework of a 'library of satDNA variants' representing a permanent source of monomers that can be amplified into novel homogeneous satDNA arrays. On the whole, diversification of satDNA monomers and copy number fluctuations provide a highly dynamic genomic environment able to form and displace satDNA sequence variants rapidly in evolution.
Background Tocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients. Methods A multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival. Results In the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6–24.0, P = 0.52) and 22.4% (97.5% CI: 17.2–28.3, P < 0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline. Conclusions Tocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline. Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.