Analysis of the immunoglobulin receptor (IGR) variable heavy- and light-chain sequences on 17 hepatitis C virus (HCV)-associated non-Hodgkin lymphomas (NHLs) (9 patients also had type II mixed cryoglobulinemia [MC] syndrome and 8 had NHL unrelated to MC) and analysis of intraclonal diversity on 8 of them suggest that such malignant lymphoproliferations derive from an antigen-driven pathologic process, with a selective pressure for the maintenance of a functional IgR and a negative pressure for additional amino acid mutations in the framework regions (FRs). For almost all NHLs, both heavy- and light-chain complementarity-determining regions (CDR3) showed the highest similarity to antibodies with rheumatoid factor (RF) activity that have been found in the MC syndrome, thus suggesting that a common antigenic stimulus is involved in MC syndrome and in HCV-associated lymphomagenesis. Moreover, because HCV is the recognized pathologic agent of MC and the CDR3 amino acid sequences of some HCV-associated NHLs also present a high homology for antibody specific for the E2 protein of HCV, it may be reasonable to speculate that HCV E2 protein is one of the chronic antigenic stimuli involved in the lymphomagenetic process. Finally, the use of specific segments, in particular the D segment, in assembling the IgH chain of IgR seems to confer B-cell disorders with the property to produce antibody with RF activity, which may contribute to the manifestation of an overt MC syndrome.
Our work highlights the importance of performing accurate investigations in PHP-Ib patients with methylation defects to allow precise genetic counseling because, in case of deletions, the segregation ratio is about 50% and the disease phenotype is transmitted in an autosomal dominant fashion via the mother.
BackgroundThe stromal vascular fraction (SVF) derived from adipose tissue contains adipose-derived stromal/stem cells (ASC) and can be used for regenerative applications. Thus, a validated protocol for SVF isolation, freezing, and thawing is required to manage product administration. To comply with Good Manufacturing Practice (GMP), fetal bovine serum (FBS), used to expand ASC in vitro, could be replaced by growth factors from platelet concentrates.MethodsThroughout each protocol, GMP-compliant reagents and devices were used. SVF cells were isolated from lipoaspirates by a standardized enzymatic protocol. Cells were cryopreserved in solutions containing different albumin or serum and dimethylsulfoxide (DMSO) concentrations. Before and after cryopreservation, we analyzed: cell viability (by Trypan blue); immunophenotype (by flow cytometry); colony-forming unit-fibroblast (CFU-F) formation; and differentiation potential. ASC, seeded at different densities, were expanded in presence of 10% FBS or 5% supernatant rich in growth factors (SRGF) from platelets. The differentiation potential and cell transformation grade were tested in expanded ASC.ResultsWe demonstrated that SVF can be obtained with a consistent yield (about 185 × 103 cells/ml lipoaspirate) and viability (about 82%). Lipoaspirate manipulation after overnight storage at +4 °C reduced cell viability (−11.6%). The relative abundance of ASC (CD34+CD45−CD31–) and endothelial precursors (CD34+CD45−CD31+) in the SVF product was about 59% and 42%, respectively. A period of 2 months cryostorage in autologous serum with added DMSO minimally affected post-thaw SVF cell viability as well as clonogenic and differentiation potentials. Viability was negatively affected when SVF was frozen at a cell concentration below 1.3 × 106 cells/ml. Cell viability was not significantly affected after a freezing period of 1 year.Independent of seeding density, ASC cultured in 5% SRGF exhibited higher growth rates when compared with 10% FBS. ASC expanded in both media showed unaltered identity (by flow cytometry) and were exempt from genetic lesions. Both 5% SRGF- and 10% FBS-expanded ASC efficiently differentiated to adipocytes, osteocytes, and chondrocytes.ConclusionsThis paper reports a GMP-compliant approach for freezing SVF cells isolated from adipose tissue by a standardized protocol. Moreover, an ASC expansion method in controlled culture conditions and without involvement of animal-derived additives was reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.