Dual metabotropic glutamate 2/3 (mGlu2/3) receptor agonists have been examined with success in the clinic with positive proof of efficacy in several tests of anxiety and schizophrenia. Moreover, a large body of evidence has accumulated that these drugs have significant neuroprotective potential. An important discussion in the field deals with dissecting effects on mGlu2 versus effects on mGlu3 receptors, which is relevant for the potential use of subtype-selective agonists or allosteric activators. We addressed this issue using mGlu2 and mGlu3 receptor knock-out mice. We used mixed cultures of cortical cells in which astrocytes and neurons were plated at different times and could therefore originate from different mice. Cultures were challenged with NMDA for the induction of excitotoxic neuronal death. The mGlu2/3 receptor agonist, (Ϫ)-2-oxa-4-aminocyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), was equally neuroprotective in cultures containing neurons from wild-type, mGlu2 ؊/؊ , or mGlu3 ؊/؊ mice. Neuroprotection was instead abolished when astrocytes lacked mGlu3 receptors, unless neuronal mGlu2 receptors were also absent. The latter condition partially restored the protective activity of LY379268. Cultures in which neurons originated from mGlu2 ؊/؊ mice were also intrinsically resistant to NMDA toxicity. In in vivo experiments, systemic administration of LY379268 protected striatal neurons against NMDA toxicity in wild-type and mGlu2 Ϫ/Ϫ mice but not in mGlu3 ؊/؊ mice. In addition, LY379268 was protective against nigrostriatal degeneration induced by low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine only in mice lacking mGlu2 receptors. We conclude that neuroprotection by mGlu2/3 receptor agonists requires the activation of astrocytic mGlu3 receptors, whereas, unexpectedly, activation of mGlu2 receptors might be harmful to neurons exposed to toxic insults.
Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic -amyloid protein (A) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4Ј-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified A-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1ЈS,2ЈS)-2-(9-xanthylmethyl)-2-(2Ј-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated A toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (Ϫ)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against A neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N- (2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified A toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of mGlu2 receptors enhances neuronal vulnerability to A, whereas dual activation of mGlu2 and mGlu3 receptors is protective against A-induced toxicity.
Summary: Inhibition of the Wnt pathway by the secreted glycoprotein, Dickkopf‐1 (Dkk‐1) has been related to processes of excitotoxic and ischemic neuronal death. We now report that Dkk‐1 is induced in neurons of the rat olfactory cortex and hippocampus degenerating in response to seizures produced by systemic injection of kainate (12 mg/kg, i.p.). There was a tight correlation between Dkk‐1 expression and neuronal death in both regions, as shown by the different expression profiles in animals classified as “high” and “low” responders to kainate. For example, no induction of Dkk‐1 was detected in the hippocampus of low responder rats, in which seizures did not cause neuronal loss. Induction of Dkk‐1 always anticipated neuronal death and was associated with a reduction in nuclear levels of β‐catenin, which reflects an ongoing inhibition of the canonical Wnt pathway. Intracerebroventricular injections of Dkk‐1 antisense oligonucleotides (12 nmol/2 μL) substantially reduced kainate‐induced neuronal damage, as did a pretreatment with lithium ions (1 mEq/kg, i.p.), which rescue the Wnt pathway by acting downstream of the Dkk‐1 blockade. Taken collectively, these data suggest that an early inhibition of the Wnt pathway by Dkk‐1 contributes to neuronal damage associated with temporal lobe epilepsy. We also examined Dkk‐1 expression in the hippocampus of epileptic patients and their controls. A strong Dkk‐1 immunolabeling was found in six bioptic samples and in one autoptic sample from patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis. Dkk‐1 expression was undetectable or very low in autoptic samples from nonepileptic patients or in bioptic samples from patients with complex partial seizures without neuronal loss and/or reactive gliosis in the hippocampus. Our data raise the attractive possibility that drugs able to rescue the canonical Wnt pathway, such as Dkk‐1 antagonists or inhibitors of glycogen synthase kinase‐3β, reduce the development of hippocampal sclerosis in patients with temporal lobe epilepsy.
The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central nervous system. Drugs that rescue the canonical Wnt pathway may attenuate hippocampal damage in major depression and other stress-related disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.