The role of regulatory T cells (Tregs) in human colon cancer (CC) remains controversial: high densities of tumor-infiltrating Tregs can correlate with better or worse clinical outcomes depending on the study. In mouse models of cancer, Tregs have been reported to suppress inflammation and protect the host, suppress T cells and protect the tumor, or even have direct cancer-promoting attributes. These different effects may result from the presence of different Treg subsets. We report the preferential expansion of a Treg subset in human CC with potent T cell–suppressive, but compromised anti-inflammatory, properties; these cells are distinguished from Tregs present in healthy donors by their coexpression of Foxp3 and RORγt. Tregs with similar attributes were found to be expanded in mouse models of hereditary polyposis. Indeed, ablation of the RORγt gene in Foxp3+ cells in polyp-prone mice stabilized Treg anti-inflammatory functions, suppressed inflammation, improved polyp-specific immune surveillance, and severely attenuated polyposis. Ablation of interleukin-6 (IL-6), IL-23, IL-17, or tumor necrosis factor–α in polyp-prone mice reduced polyp number but not to the same extent as loss of RORγt. Surprisingly, loss of IL-17A had a dual effect: IL-17A–deficient mice had fewer polyps but continued to have RORγt+ Tregs and developed invasive cancer. Thus, we conclude that RORγt has a central role in determining the balance between protective and pathogenic Tregs in CC and that Treg subtype regulates inflammation, potency of immune surveillance, and severity of disease outcome.
Obesity is associated with an increased incidence and severity of asthma, as well as other lung disorders, such as pulmonary hypertension. Adiponectin (APN), an antiinflammatory adipocytokine, circulates at lower levels in the obese, which is thought to contribute to obesity-related inflammatory diseases. We sought to determine the effects of APN deficiency in a murine model of chronic asthma. Allergic airway inflammation was induced in APN-deficient mice (APN(-/-)) using sensitization without adjuvant followed by airway challenge with ovalbumin. The mice were then analyzed for changes in inflammation and lung remodeling. APN(-/-) mice in this model develop increased allergic airway inflammation compared with wild-type mice, with greater accumulation of eosinophils and monocytes in the airways associated with elevated lung chemokine levels. Surprisingly, APN(-/-) mice developed severe pulmonary arterial muscularization and pulmonary arterial hypertension in this model, whereas wild-type mice had only mild vascular remodeling and comparatively less pulmonary arterial hypertension. Our findings demonstrate that APN modulates allergic inflammation and pulmonary vascular remodeling in a model of chronic asthma. These data provide a possible mechanism for the association between obesity and asthma, and suggest a potential novel link between obesity, inflammatory lung disease, and pulmonary hypertension.
Key Points• CUX1 is a transcription factor encoded on a region of chromosome 7 that is frequently deleted in high-risk acute myeloid leukemia.• Haploinsufficiency of CUX1/ cut promotes hematopoietic overgrowth in both Drosophila melanogaster and human xenograft mouse models in vivo.Loss of chromosome 7 and del(7q) [؊7/del(7q)] are recurring cytogenetic abnormalities in hematologic malignancies, including acute myeloid leukemia and therapy-related myeloid neoplasms, and associated with an adverse prognosis. Despite intensive effort by many laboratories, the putative myeloid tumor suppressor(s) on chromosome 7 has not yet been identified. We performed transcriptome sequencing and SNP array analysis on de novo and therapy-related myeloid neoplasms, half with ؊7/del(7q). We identified a 2.17-Mb commonly deleted segment on chromosome band 7q22.1 containing CUX1, a gene encoding a homeodomain-containing transcription factor. In 1 case, CUX1 was disrupted by a translocation, resulting in a loss-of-function RNA fusion transcript. CUX1 was the most significantly differentially expressed gene within the commonly deleted segment and was expressed at haploinsufficient levels in ؊7/del(7q) leukemias. Haploinsufficiency of the highly conserved ortholog, cut, led to hemocyte overgrowth and tumor formation in Drosophila melanogaster. Similarly, haploinsufficiency of CUX1 gave human hematopoietic cells a significant engraftment advantage on transplantation into immunodeficient mice. Within the RNA-sequencing data, we identified a CUX1-associated cell cycle transcriptional gene signature, suggesting that CUX1 exerts tumor suppressor activity by regulating proliferative genes. These data identify CUX1 as a conserved, haploinsufficient tumor suppressor frequently deleted in myeloid neoplasms. (Blood. 2013;121(6):975-983) IntroductionLoss of chromosome 7 and del(7q) [Ϫ7/del(7q)] was first recognized as a frequent event in acute myeloid leukemia (AML) nearly 40 years ago. 1 Ϫ7/del(7q) occurs in 8% of de novo AML 2 and 50% of therapy-related myeloid neoplasms (t-MNs). 3 Ϫ7/del(7q) is also found in myelodysplastic syndromes, AMLs arising from myeloproliferative neoplasms, the blast phase of chronic myelogenous leukemia, Ph ϩ acute lymphoblastic leukemia, and AMLs associated with inherited syndromes. 4-10 Ϫ7/del(7q) is an adverserisk prognostic indicator in myeloid disorders, and the long-term outcome for patients is typically poor. The median overall survival for patients with de novo AML or t-MNs with Ϫ7/del(7q) is ϳ 6 months. 2,3 Loss of 1 or more tumor suppressor gene(s) (TSGs) is thought to contribute to leukemic growth in myeloid malignancies with Ϫ7/del(7q). Several groups have mapped a commonly deleted segment (CDS) of chromosome band 7q22 using polymorphic markers, conventional cytogenetic analysis, and FISH analysis. [11][12][13] In one study of 81 patients with malignant myeloid disorders characterized by chromosome 7 abnormalities, the CDS was mapped to a 2.52-Mb region of 7q22 by FISH using YAC clones. 11 However, deletion ...
STAT6-mediated chemokine production in the lung is required for Th2 lymphocyte and eosinophil homing into the airways in allergic pulmonary inflammation, and thus is a potential therapeutic target in asthma. However, the critical cellular source of STAT6-mediated chemokine production has not been defined. In this study, we demonstrate that STAT6 in bone marrow-derived myeloid cells was sufficient for the production of CCL17, CCL22, CCL11, and CCL24 and for Th2 lymphocyte and eosinophil recruitment into the allergic airway. In contrast, STAT6 in airway-lining cells did not mediate chemokine production or support cellular recruitment. Selective depletion of CD11b+ myeloid cells in the lung identified these cells as the critical cellular source for the chemokines CCL17 and CCL22. These data reveal that CD11b+ myeloid cells in the lung help orchestrate the adaptive immune response in asthma, in part, through the production of STAT6-inducible chemokines and the recruitment of Th2 lymphocytes into the airway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.