BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor vorinostat suppresses SLC7A11, leading to a lethal increase in the already-elevated levels of ROS in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor-resistant melanoma, we find that vorinostat can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.
The large-scale genetic profiling of tumours can identify potentially actionable molecular variants for which approved anticancer drugs are available 1-3 . However, when patients with such variants are treated with drugs outside of their approved label, successes and failures of targeted therapy are not systematically collected or shared. We therefore initiated the Drug Rediscovery protocol, an adaptive, precision-oncology trial that aims to identify signals of activity in cohorts of patients, with defined tumour types and molecular variants, who are being treated with anticancer drugs outside of their approved label. To be eligible for the trial, patients have to have exhausted or declined standard therapies, and have malignancies with potentially actionable variants for which no approved anticancer drugs are available. Here we show an overall rate of clinical benefit-defined as complete or partial response, or as stable disease beyond 16 weeks-of 34% in 215 treated patients, comprising 136 patients who received targeted therapies and 79 patients who received immunotherapy. The overall median duration of clinical benefit was 9 months (95% confidence interval of 8-11 months), including 26 patients who were experiencing ongoing clinical benefit at data cut-off. The potential of the Drug Rediscovery protocol is illustrated by the identification of a successful cohort of patients with microsatellite instable tumours who received nivolumab (clinical benefit rate of 63%), and a cohort of patients with colorectal cancer with relatively low mutational load who experienced only limited clinical benefit from immunotherapy. The Drug Rediscovery protocol facilitates the defined use of approved drugs beyond their labels in rare subgroups of cancer, identifies early signals of activity in these subgroups, accelerates the clinical translation of new insights into the use of anticancer drugs outside of their approved label, and creates a publicly available repository of knowledge for future decision-making.The precision treatment of cancer holds great promise for patients in terms of life extension and quality of life 1,2,4-7 . However, early studies and experiences with genetically and molecularly informed decisions regarding treatment have also identified considerable hurdles, which may jeopardize the way in which we capitalize on precision medicine [8][9][10][11] . First, populations of patients who are eligible for specific treatments or trials become smaller and trials accrue slower, owing to pre-selection by targeted sequencing of candidate variants and to slow implementation of pre-selection tests. Second, these candidate variants can, in general, be appreciated only when their tissue context Online contentAny methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.