No abstract
Binary polymorphisms associated with the non-recombining region of the human Y chromosome (NRY) preserve the paternal genetic legacy of our species that has persisted to the present, permitting inference of human evolution, population affinity and demographic history. We used denaturing high-performance liquid chromatography (DHPLC; ref. 2) to identify 160 of the 166 bi-allelic and 1 tri-allelic site that formed a parsimonious genealogy of 116 haplotypes, several of which display distinct population affinities based on the analysis of 1062 globally representative individuals. A minority of contemporary East Africans and Khoisan represent the descendants of the most ancestral patrilineages of anatomically modern humans that left Africa between 35,000 and 89,000 years ago.
Variation in the human mitochondrial genome (mtDNA) is now routinely described and used to infer the histories of peoples, by means of one of two procedures, namely, the assaying of RFLPs throughout the genome and the sequencing of parts of the control region (CR). Using 95 samples from the Near East and northwest Caucasus, we present an analysis based on both systems, demonstrate their concordance, and, using additional available information, present the most refined phylogeny to date of west Eurasian mtDNA. We describe and apply a nomenclature for mtDNA clusters. Hypervariable nucleotides are identified, and the relative mutation rates of the two systems are evaluated. We point out where ambiguities remain. The identification of signature mutations for each cluster leads us to apply a hierarchical scheme for determining the cluster composition of a sample of Berber speakers, previously analyzed only for CR variation. We show that the main indigenous North African cluster is a sister group to the most ancient cluster of European mtDNAs, from which it diverged approximately 50,000 years ago.
Haplotypes consisting of alleles at a short tandem repeat polymorphism (STRP) and an Alu deletion polymorphism at the CD4 locus on chromosome 12 were analyzed in more than 1600 individuals sampled from 42 geographically dispersed populations (13 African, 2 Middle Eastern, 7 European, 9 Asian, 3 Pacific, and 8 Amerindian). Sub-Saharan African populations had more haplotypes and exhibited more variability in frequencies of haplotypes than the Northeast African or non-African populations. The Alu deletion was nearly always associated with a single STRP allele in non-African and Northeast African populations but was associated with a wide range of STRP alleles in the sub-Saharan African populations. This global pattern of haplotype variation and linkage disequilibrium suggests a common and recent African origin for all non-African human populations.
Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical and cultural traditions. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa and Asia, in what is termed the Jewish Diaspora. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people. Although many genetic studies have shed light on Jewish origins and on diseases prevalent among Jewish communities, including studies focusing on uniparentally and biparentally inherited markers, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbours have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not previously been reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and north Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight subcluster that overlies Druze and Cypriot samples but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Indian Jews (Bene Israel and Cochini) cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively, despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.