Abstract. The Gulf of Lions is a river-dominated ocean margin that receives high loads of nutrients and particulate matter from the Rhône River but most particulate materials settle rapidly on the nearshore seafloor. One question is raised on the fate of these large quantities of organic carbon delivered by the river to the coastal marine environment. Surface sediments (0-0.5 cm) were collected in the Rhône prodelta and its adjacent shelf during a period of low river discharge (April 2007, 16 stations). The sources, distribution and lability of sedimentary organic matter were examined using bulk (organic carbon, total nitrogen, stable carbon isotope ratios, and grain size) and molecular-level (pigments, amino acids, fatty acids, and δ 13 C of individual fatty acids) analyses. Our results confirmed previous observations of a southwestward Rhodanian imprint in the nearshore sediments, with 97 % of terrigenous inputs of organic matter near the river mouth. Isotopic values of bulk organic carbon, as well as fatty acid biomarkers and compound-specific δ 13 C signatures of most fatty acids clearly indicate that the Rhône inputs consist of a mixture of organic matter (OM) from different origins with a strong contribution from terrestrial sources (soil and plant debris), and a smaller input from freshwater microalgae, mostly diatoms. The influence of the Rhône River was prominent within the first ten kilometers, but may still be observed on the outer shelf (∼21 km) as indicated by the occurrence of long chain fatty acids, which are derived from vascular plants, and their δ 13 C signatures. In the proximal prodelta, Correspondence to: A. M. Pruski (audrey.pruski@obs-banyuls.fr) bacteria-specific fatty acids were abundant (1.65 mg g −1 OC at the mouth site) and were relatively depleted in δ 13 C confirming that bacteria mostly utilize land-derived OM. In the shelf area, the inputs of marine OM and its predominant utilization by the bacteria was confirmed, but the coupling between the pelagic and the benthic compartments appeared limited at this period of the year.Overall, degradation indexes based on amino acids (Dauwe's degradation index) and pigments (ratio of intact chlorophyll-a to the sum of chlorophyll-a + phaeopigmenta), as well as isotopic enrichment of source-specific fatty acids reveal an offshore gradient of OM decay reflecting the rapid deposition of the terrestrial material in the prodelta, the low mixing with OM deriving from marine sources and the efficient degradation of the OM. The OM delivered by the Rhône is relatively labile based on the intermediary value of Dauwe's degradation index, the high proportion of bioavailable nitrogen and the occurrence of polyunsaturated fatty acids. Deltaic sediments off the Rhône River should thus be of sufficiently high nutritional quality to sustain dense macrofaunal communities.
International audienceThe consequences of changes in the water flow of the Rhône River on surface sediment characteristics and benthic macrofauna composition were assessed within 3 distinct areas: (1) the delta front, (2) the prodelta, and (3) the distal zone. Five stations were sampled during or closely after: (1) an oceanic flood (April 2007), (2) a generalized flood (May 2008), (3) a Cevenol flood (December 2008), and (4) a dry period (July 2011). Measurements of sediment characteristics included granulometry (D0.5), bulk descriptors of sedimentary organics (OC, TN and THAA), descriptors of labile components of sedimentary organics (chloropigments, EHAA), and both descriptors of origin (Chl-b/Chl-a, C/N) and lability (Chl-a/(Chl-a+Phaeo-a), EHAA/THAA) of sedimentary organics. Sediment Profile Images were collected during April 2007, May 2008 and July 2011. Temporal changes in both sedimentary organics and benthic macrofauna were more important in the delta front and the prodelta than in the distal zone. Bulk characteristics of sedimentary organics presented decreasing inshore/offshore gradients during both April 2007 and July 2011 but not during May and December 2008. There were significant temporal changes in EHAA/THAA at all stations. Changes in benthic macrofauna composition differed between: (1) the delta front and the prodelta, and (2) the distal zone. In the former area, the dry period was associated with establishing a mature community characterized by high abundances and species richness. The best description of spatiotemporal changes in benthic macrofauna composition by surface sediment characteristics was obtained using D0.5, Chl-b/Chl-a, Chl-a/(Chl-a+Phaeo-a) and EHAA, which supports the role of the quality of sedimentary organics in controlling benthic macrofauna composition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.