Schizophrenia is a complex disorder that interferes with the function of several brain systems required for cognition and normal social behaviour. Although the most notable clinical aspects of the disease only become apparent during late adolescence or early adulthood, many lines of evidence suggest that schizophrenia is a neurodevelopmental disorder with a strong genetic component. Several independent studies have identified neuregulin 1 (NRG1) and its receptor ERBB4 as important risk genes for schizophrenia, although their precise role in the disease process remains unknown. Here we show that Nrg1 and ErbB4 signalling controls the development of inhibitory circuitries in the mammalian cerebral cortex by cell-autonomously regulating the connectivity of specific GABA (gamma-aminobutyric acid)-containing interneurons. In contrast to the prevalent view, which supports a role for these genes in the formation and function of excitatory synapses between pyramidal cells, we found that ErbB4 expression in the mouse neocortex and hippocampus is largely confined to certain classes of interneurons. In particular, ErbB4 is expressed by many parvalbumin-expressing chandelier and basket cells, where it localizes to axon terminals and postsynaptic densities receiving glutamatergic input. Gain- and loss-of-function experiments, both in vitro and in vivo, demonstrate that ErbB4 cell-autonomously promotes the formation of axo-axonic inhibitory synapses over pyramidal cells, and that this function is probably mediated by Nrg1. In addition, ErbB4 expression in GABA-containing interneurons regulates the formation of excitatory synapses onto the dendrites of these cells. By contrast, ErbB4 is dispensable for excitatory transmission between pyramidal neurons. Altogether, our results indicate that Nrg1 and ErbB4 signalling is required for the wiring of GABA-mediated circuits in the postnatal cortex, providing a new perspective to the involvement of these genes in the aetiology of schizophrenia.
Activity-dependent neuronal plasticity is a fundamental mechanism through which the nervous system adapts to sensory experience. Several lines of evidence suggest that parvalbumin (PV+) interneurons are essential in this process, but the molecular mechanisms underlying the influence of experience on interneuron plasticity remain poorly understood. Perineuronal nets (PNNs) enwrapping PV+ cells are long-standing candidates for playing such a role, yet their precise contribution has remained elusive. We show that the PNN protein Brevican is a critical regulator of interneuron plasticity. We find that Brevican simultaneously controls cellular and synaptic forms of plasticity in PV+ cells by regulating the localization of potassium channels and AMPA receptors, respectively. By modulating Brevican levels, experience introduces precise molecular and cellular modifications in PV+ cells that are required for learning and memory. These findings uncover a molecular program through which a PNN protein facilitates appropriate behavioral responses to experience by dynamically gating PV+ interneuron function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.