Herein, a novel nanobiocomposite scaffold based on modifying synthesized cross-linked terephthaloyl thiourea-chitosan hydrogel (CTT-CS hydrogel) substrate using the extracted silk fibroin (SF) biopolymer and prepared Mg(OH)2 nanoparticles was designed and synthesized. The biological capacity of this nanobiocomposite scaffold was evaluated by cell viability method, red blood cells hemolytic and anti-biofilm assays. According to the obtained results from 3 and 7 days, the cell viability of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold was accompanied by a considerable increment from 62.5 to 89.6% respectively. Furthermore, its low hemolytic effect (4.5%), and as well, the high anti-biofilm activity and prevention of the P. aeruginosa biofilm formation confirmed its promising hemocompatibility and antibacterial activity. Apart from the cell viability, blood biocompatibility, and antibacterial activity of CTT-CS/SF/Mg(OH)2 nanobiocomposite scaffold, its structural features were characterized using spectral and analytical techniques (FT-IR, EDX, FE-SEM and TG). As well as, given the mechanical tests, it was indicated that the addition of SF and Mg(OH)2 nanoparticles to the CTT-CS hydrogel could improve its compressive strength from 65.42 to 649.56 kPa.
In this paper, a novel nanocomposite based on magnetic nanoparticles decorated by dopamine were reported. Three modified magnetic nanocomposites by dopamine were offered with different type of linkers. The mentioned magnetic nanocomposites were applied to separate α-amylase protein from fresh bovine milk. All of the magnetic nanocomposites were characterized and investigated by using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, field-emission scanning microscope, X-ray diffraction pattern, and vibrating-sample magnetometer analyses. To investigate the purifying application, sodium dodecyl sulfate polyacrylamide gel electrophoresis, one-dimensional isoelectric focusing gel electrophoresis, and alpha-amylase activity assay were employed. With paying attention to factors such as yield of purification and concentration of separated protein by each of magnetic nanocomposite, it could be concluded that the length of linkers played an important role in α-amylase protein separation. According to the results, the best separation and purification of α-amylase protein with 49.83% recovery and 40.11-fold purification efficiency was related to longest length linker, 1,4-butanediol diglycidyl ether, because of considerable conjugation with nanocomposite. Also, docking calculation has shown that the binding energy is − 1.697 kcal/mol and ΔG = − 6.844 kcal/mol which result that the interaction process between dopamine and α-amylase protein is spontaneous.
Some new branched polysilyl ethers with a ferrocene core were synthesized through treatment of 1,1´-bis[tris(dimethylsilyl)methyl]alkylferrocenes with various alcohols by Karstedt catalyst. Bis(chloroalkyl)ferrocenes are synthesized by acylation of ferrocene with 3-chloropropanoyl chloride and 4-chlorobutanoyl chloride. The obtained 1,1´-bis(3-chloropropanoyl)ferrocene and 1,1´-bis(4-chlorobutanoyl)ferrocene underwent a reduction and chlorides were replaced by bromides, and then they were treated with (Me3Si)3CLi and (HMe2Si)3CLi give silane compounds 6a-b and 7a-b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.