Twelve large-eddy simulations, with a wide range of microphysical representations, are compared to each other and to independent measurements. The measurements and the initial and forcing data for the simulations are taken from the undisturbed period of the Rain in Cumulus over the Ocean (RICO) field study. A regional downscaling of meteorological analyses is performed so as to provide forcing data consistent with the measurements. The ensemble average of the simulations plausibly reproduces many features of the observed clouds, including the vertical structure of cloud fraction, profiles of cloud and rain water, and to a lesser degree the population density of rain drops. The simulations do show considerable departures from one another in the representation of the cloud microphysical structure and the ensuant surface precipitation rates, increasingly so for the more simplified microphysical models. There is a robust tendency for simulations that develop rain to produce a shallower, somewhat more stable cloud layer. Relations between cloud cover and precipitation are ambiguous.
ABSTRACT:Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) programme's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud-top temperature of −15 • C. The average liquid water path of around 160 g m −2 was about two-thirds of the adiabatic value and far greater than the average mass of ice which when integrated from the surface to cloud top was around 15 g m −2 .Simulations of 17 single-column models (SCMs) and 9 cloud-resolving models (CRMs) are compared. While the simulated ice water path is generally consistent with observed values, the median SCM and CRM liquid water path is a factor-of-three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path.Despite this underestimate, the simulated liquid and ice water paths of several models are consistent with observed values. Furthermore, models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter exists. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.
Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, N i , exerts significant influence on the cloud structure. Increasing N i leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.
SignificanceSimulated clouds over the Southern Ocean reflect too little solar radiation compared with observations, which results in errors in simulated surface temperatures and in many other important features of the climate system. Our results show that the radiative properties of the most biased types of clouds in cyclonic systems are highly sensitive to the concentration of ice-nucleating particles. The uniquely low concentrations of ice-nucleating particles in this remote marine environment strongly inhibit precipitation and allow much brighter clouds to be sustained.
[1] The Tropical Warm Pool-International Cloud Experiment (TWP-ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two-part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation-sized ice reaches higher altitudes than simulated precipitation-sized ice despite some simulations that predict lower than observed top-of-atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one-moment microphysics schemes whereas snow is the cause with two-moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (D m ) than differences in ice water content. D m is largely dependent on the mass-dimension relationship and gamma size distribution parameters such as size intercept (N 0 ) and shape parameter (m). Having variable density, variable N 0 , or m greater than zero produces radar reflectivities closest to those observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.