Environmental DNA (eDNA) can be used to identify macroorganisms and describe biodiversity, and thus has promise to supplement biological monitoring in marine ecosystems. Despite this promise, scaling sample acquisition to the spatial and temporal scales needed for effective monitoring would require prohibitively large investments in time and human resources. To address this challenge, we evaluated the efficacy of an autonomous eDNA sampling system and compare results obtained to traditional eDNA sampling methods. The autonomous sampling instrument consisted of the Environmental Sample Processor (ESP) coupled to an autonomous underwater vehicle (AUV). We tested equivalency between the ESP and traditional eDNA sampling techniques by comparing the quantification of eDNA across a broad range of taxa, from microbes (SAR11), phytoplankton (Pseudo-nitzschia spp.), and invertebrates (krill: Euphausia pacifica) to vertebrates (anchovy: Engraulis mordax). No significant differences in eDNA densities were observed between the two sample collection and filtration methods. eDNA filters collected by the ESP were preserved and stable for 21 days, the typical deployment length of the instrumentation. Finally, we demonstrated the unique capabilities of an autonomous, mobile ESP during a deployment near Monterey Bay, CA, by remotely and repeatedly sampling a water mass over 12 h. The development of a mobile ESP demonstrates the promise of utilizing eDNA measurements to observe complex biological processes in the ocean absent a human presence.
Environmental DNA (eDNA) is an emerging and powerful method for use in marine research, conservation, and management, yet time‐ and resource‐intensive protocols limit the scale of implementation. Long‐range autonomous underwater vehicles equipped with autonomous environmental sample processors (LRAUV‐ESPs) provide a new means for scaling up marine eDNA sample collection and processing. Here, we used eDNA metabarcoding of four marker genes (mitochondrial 12S rRNA, bacterial and archaeal 16S rRNA, nuclear 18S rRNA, and mitochondrial COI), which encompass the diversity of marine species from microbes to vertebrates, to demonstrate the efficacy of an LRAUV‐ESP in sampling eDNA and assessing community structure in the Monterey Bay National Marine Sanctuary. The sequencing results from samples that were autonomously collected were comparable with those collected from a ship at similar locations, times, and depths, supporting previous results that found no significant differences using targeted qPCR. This study demonstrates the potential of equipping autonomous underwater vehicles with ESPs to greatly expand the scale of eDNA sample collection and processing and provide much needed information regarding the changing spatial and temporal patterns of marine biodiversity, especially in many data‐poor regions of the world's oceans.
The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.e., Lagrangian. Here, we report the development and application of a system of coordinated robots for studying planktonic biological communities drifting within the ocean. The presented Lagrangian system uses three coordinated autonomous robotic platforms. The focal platform consists of an autonomous underwater vehicle (AUV) fitted with a robotic water sampler. This platform localizes and drifts within a DCM community, periodically acquiring samples while continuously monitoring the local environment. The second platform is an AUV equipped with environmental sensing and acoustic tracking capabilities. This platform characterizes environmental conditions by tracking the focal platform and vertically profiling in its vicinity. The third platform is an autonomous surface vehicle equipped with satellite communications and subsea acoustic tracking capabilities. While also acoustically tracking the focal platform, this vehicle serves as a communication relay that connects the subsea robot to human operators, thereby providing situational awareness and enabling intervention if needed. Deployed in the North Pacific Ocean within the core of a cyclonic eddy, this coordinated system autonomously captured fundamental characteristics of the in situ DCM microbial community in a manner not possible previously.
Several sequential upwelling events were observed in fall 2012, using measurements from the outer half of the continental shelf in Monterey Bay, during which the infiltration of dense water onto the shelf created a secondary, near-bottom pycnocline. This deep pycnocline existed in concert with the near-surface pycnocline and enabled the propagation of near-bottom, cold, semidiurnal internal tidal bores, as well as energetic, high-frequency, nonlinear internal waves of elevation (IWOE). The IWOE occurred within 20 m of the bottom, had amplitudes of 8-24 m, periods of 6-45 min, and depth-integrated energy fluxes up to 200 W m À1 . Iribarren numbers (<0.03) indicate that these IWOE were nonbreaking in this region of the shelf. These observations further demonstrate how regional upwelling dynamics and the resulting bulk, cross-margin hydrography is a first-order control on the ability of internal waves, at tidal and higher frequencies, to propagate through continental shelf waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.