Novel antibody-drug conjugates against HER2 are showing high activity in HER2-negative breast cancer (BC) with low HER2 expression (i.e., 1+ or 2+ and lack of ERBB2 amplification). However, the clinical and molecular features of HER2-low BC are yet to be elucidated. Here, we collected retrospective clinicopathological and PAM50 data from 3,689 patients with HER2-negative disease and made the following observations. First, the proportion of HER2-low was higher in HR-positive disease (65.4%) than triple-negative BC (TNBC, 36.6%). Second, within HR-positive disease, ERBB2 and luminal-related genes were more expressed in HER2-low than HER2 0. In contrast, no gene was found differentially expressed in TNBC according to HER2 expression. Third, within HER2-low, ERBB2 levels were higher in HR-positive disease than TNBC. Fourth, HER2-low was not associated with overall survival in HR-positive disease and TNBC. Finally, the reproducibility of HER2-low among pathologists was suboptimal. This study emphasizes the large biological heterogeneity of HER2-low BC, and the need to implement reproducible and sensitive assays to measure low HER2 expression.
Purpose: The therascreen PIK3CA mutation assay and the alpha-specific PI3K inhibitor alpelisib are FDA-approved for identifying and treating patients with advanced PIK3CA-mutated (PIK3CAmut) breast cancer (BC). However, it is currently unknown to what extend this assay detects most PIK3CA mutations in BC. This information is critical as patients and clinicians are using this and other genomic assays to indicate alpelisib. Methods: Data from 6338 patients with BC was explored across 10 publicly available studies. The primary objective was to evaluate the proportion and distribution of PIK3CA mutations in BC. Secondary objectives were (1) to evaluate in silico the spectrum of PIK3CA mutations in BC that would be captured by the therascreen panel; (2) to evaluate the proportion and distribution of PIK3CA mutations in hormone receptor-positive/HER2-negative (HR+/ HER2−), HER2+, and triple-negative BC (TNBC); and (3) to explore the identification of PIK3CA mutations in a cohort of 48 HR+/HER2− advanced BC patients by the Guardant B360 circulating tumor DNA (ctDNA) assay. Results: Patients with PIK3CAmut tumors represented 35.7% (2261/6338). Five PIK3CA mutations comprised 73% of all PIK3CA mutations: H1047R (35%), E545K (17%), E542K (11%), N345K (6%), and H1047L (4%). Therascreen gene list would capture 72% of all PIK3CA mutations and 80% of patients with a known PIK3CAmut BC. Among patients with double PIK3CAmut tumors (12% of all PIK3CAmut), the therascreen panel would capture 78% as harboring 1 single PIK3CA mutation, 17% as PIK3CAmut undetected, and 5% as PIK3CA double-mut. PIK3CA mutation rates were lower in TNBC (16%) compared to HR+/HER2 (42%) and HER2+ (31%) BC; however, the distribution of the 4 main PIK3CA mutations across subtypes was similar. Finally, 28% of PIK3CA mutations identified in ctDNA in 48 patients with advanced HR+/HER2− BC were not part of the therascreen panel.
The novel coronavirus disease 2019 (COVID-19) shows a wide spectrum of clinical presentations, severity, and fatality rates. The reason older patients and males show increased risk of severe disease and death remains uncertain. Sex hormones, such as estradiol, progesterone, and testosterone, might be implicated in the age-dependent and sex-specific severity of COVID-19. High testosterone levels could upregulate transmembrane serine protease 2 (TMPRSS2), facilitating the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells via angiotensin-converting enzyme 2 (ACE2). Data from patients with prostate cancer treated with androgen-deprivation therapy seem to confirm this hypothesis. Clinical studies on TMPRSS2 inhibitors, such as camostat, nafamostat, and bromhexine, are ongoing. Antiandrogens, such as bicalutamide and enzalutamide, are also under investigation. Conversely, other studies suggest that the immune modulating properties of androgens could protect from the unfavorable cytokine storm, and that low testosterone levels might be associated with a worse prognosis in patients with COVID-19. Some evidence also supports the notion that estrogens and progesterone might exert a protective effect on females, through direct antiviral activity or immune-mediated mechanisms, thus explaining the higher COVID-19 severity in post-menopausal women. In this perspective, we discuss the available evidence on sex hormones and hormone therapy in patients infected with SARS-CoV-2, and we highlight the possible implications for cancer patients, who can receive hormonal therapies during their treatment plans.
Background Both clinical and genomic data independently predict survival and treatment response in early-stage HER2-positive breast cancer. Here we present the development and validation of a new HER2DX risk score, and a new HER2DX pathological complete response (pCR) score, both based on a 27-gene expression plus clinical featurebased classifier.Methods HER2DX is a supervised learning algorithm incorporating tumour size, nodal staging, and 4 gene expression signatures tracking immune infiltration, tumour cell proliferation, luminal differentiation, and the expression of the HER2 amplicon, into a single score. 434 HER2-positive tumours from the Short-HER trial were used to train a prognostic risk model; 268 cases from an independent cohort were used to verify the accuracy of the HER2DX risk score. In addition, 116 cases treated with neoadjuvant anti-HER2-based chemotherapy were used to train a predictive model of pathological complete response (pCR); two independent cohorts of 91 and 67 cases were used to verify the accuracy of the HER2DX pCR likelihood score. Five publicly available independent datasets with >1,000 patients with early-stage HER2-positive disease were also analysed.Findings In Short-HER, HER2DX variables were associated with good risk outcomes (i.e., immune, and luminal) and poor risk outcomes (i.e., proliferation, and tumour and nodal staging). In an independent cohort, continuous HER2DX risk score was significantly associated with disease-free survival (DFS) (p=0¢002); the 5-year DFS in the low-risk group was 97¢4% (94¢4-100¢0%). For the neoadjuvant pCR predictor training cohort, HER2DX variables were associated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.