We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keV_{ee} ([4.9,40.9] keV_{nr}), exhibits an ultralow electron recoil background rate of [82_{-3}^{+5}(syst)±3(stat)] events/(ton yr keV_{ee}). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c^{2}, with a minimum of 4.1×10^{-47} cm^{2} at 30 GeV/c^{2} and a 90% confidence level.
We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the ð1042 AE 12Þ-kg fiducial mass and in the ½5; 40 keV nr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was ð1.93 AE 0.25Þ × 10 −4 events=ðkg × day × keV ee Þ, the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only
Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies 30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, ν µ-induced tracks from the Northern hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index −2.50 ± 0.09 and a flux at 100 TeV of 6.7 +1.1 −1.2 • 10 −18 GeV −1 s −1 sr −1 cm −2. Under the same assumptions, an unbroken power law with index −2 is disfavored with a significance of 3.8 σ (p = 0.0066%) with respect to the best fit. This significance is reduced to 2.1 σ (p = 1.7%) if instead we compare the best fit to a spectrum with index −2 that has an exponential cutoff at high energies. Allowing the electron neutrino flux to deviate from the other two flavors, we find a ν e fraction of 0.18 ± 0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay dominated sources, is rejected with a significance of 3.6 σ (p = 0.014%).
The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between and a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at neutrino energy of and a hard spectral index of . The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of which implies a probability of less than for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above no correlation with known γ-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.