In vitro studies suggest that the G protein-coupled receptor (GPR) 30 is a functional estrogen receptor. However, the physiological role of GPR30 in vivo is unknown, and it remains to be determined whether GPR30 is an estrogen receptor also in vivo. To this end, we studied the effects of disrupting the GPR30 gene in female and male mice. Female GPR30((-/-)) mice had hyperglycemia and impaired glucose tolerance, reduced body growth, increased blood pressure, and reduced serum IGF-I levels. The reduced growth correlated with a proportional decrease in skeletal development. The elevated blood pressure was associated with an increased vascular resistance manifested as an increased media to lumen ratio of the resistance arteries. The hyperglycemia and impaired glucose tolerance in vivo were associated with decreased insulin expression and release in vivo and in vitro in isolated pancreatic islets. GPR30 is expressed in islets, and GPR30 deletion abolished estradiol-stimulated insulin release both in vivo in ovariectomized adult mice and in vitro in isolated islets. Our findings show that GPR30 is important for several metabolic functions in female mice, including estradiol-stimulated insulin release.
SummaryOlder people suffer from a decline in immune system, which affects their ability to respond to infections and to raise efficient responses to vaccines. Effective and specific antibodies in responses from older individuals are decreased in favour of non-specific antibody production. We investigated the B-cell repertoire in DNA samples from peripheral blood of individuals aged 86-94 years, and a control group aged 19 -54 years, using spectratype analysis of the IGHV complementarity determining region (CDR)3. We found that a proportion of older individuals had a dramatic collapse in their B-cell repertoire diversity.
Sequencing of polymerase chain reaction products from a selection of samples indicated that this loss of diversity was characterized by clonal expansions of B cells in vivo.Statistical analysis of the spectratypes enabled objective comparisons and showed that loss of diversity correlated very strongly with the general health status of the individuals; a distorted spectratype can be used to predict frailty. Correlations with survival and vitamin B12 status were also seen. We conclude that B-cell diversity can decrease dramatically with age and may have important implications for the immune health of older people. B-cell immune frailty is also a marker of general frailty.
In the previous OCTO longitudinal study, we identified an immune risk phenotype (IRP) of high CD8 and low CD4 numbers and poor proliferative response. We also demonstrated that cognitive impairment constitutes a major predictor of nonsurvival. In the present NONA longitudinal study, we simultaneously examine in a model of allostatic load IRP and compromised cognition in 4-year survival in a population-based sample (n = 138, 86-94 years). Immune system measurements consisted of determinations of T-cell subsets, plasma interleukin 6 and cytomegalovirus and Epstein-Barr virus serology. Interleukin 2 responsiveness to concanavalin A, using data from the previous OCTO (octogenarians) immune study, hereafter OCTO immune, was also examined. Cognitive status was rated using a battery of neuropsychological tests. Logistic regression indicated that the IRP and cognitive impairment together predicted 58% of observed deaths. IRP was associated with late differentiated CD8+CD28-CD27- cells (p < .001), decreased interleukin 2 responsiveness (p < .05) and persistent viral infection (p < .01). Cognitive impairment was associated with increased plasma interleukin 6 (p < .001). IRP individuals with cognitive impairment were all deceased at the follow-up, indicating an allostatic overload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.