Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory mAbs to act both on irradiated tumor lesions and on distant, nonirradiated tumor sites. The combination of radiotherapy with immunostimulatory anti-PD1 and anti-CD137 mAbs was conducive to favorable effects on distant nonirradiated tumor lesions as observed in transplanted MC38 (colorectal cancer), B16OVA (melanoma), and 4T1 (breast cancer) models. The therapeutic activity was crucially performed by CD8 T cells, as found in selective depletion experiments. Moreover, the integrities of BATF-3-dependent dendritic cells specialized in crosspresentation/crosspriming of antigens to CD8þ T cells and of the type I IFN system were absolute requirements for the antitumor effects to occur. The irradiation regimen induced immune infiltrate changes in the irradiated and nonirradiated lesions featured by reductions in the total content of effector T cells, Tregs, and myeloid-derived suppressor cells, while effector T cells expressed more intracellular IFNg in both the irradiated and contralateral tumors. Importantly, 48 hours after irradiation, CD8 þ TILs showed brighter expression of CD137 and PD1, thereby displaying more target molecules for the corresponding mAbs. Likewise, PD1 and CD137 were induced on tumor-infiltrating lymphocytes from surgically excised human carcinomas that were irradiated ex vivo. These mechanisms involving crosspriming and CD8 T cells advocate clinical development of immunotherapy combinations with anti-PD1 plus anti-CD137 mAbs that can be synergistically accompanied by radiotherapy strategies, even if the disease is left outside the field of irradiation.
This radio-immunotherapy combination strategy, aimed at resembling viral infection in tumor tissue in combination with a dendritic-cell vaccine and SABR, is safe and shows immune-associated activity and signs of preliminary clinical efficacy.
Radiotherapy can be synergistically combined with immunotherapy in mouse models, extending its efficacious effects outside of the irradiated field (abscopal effects). We previously reported that a regimen encompassing local radiotherapy in combination with anti-CD137 plus anti-PD-1 mAbs achieves potent abscopal effects against syngeneic transplanted murine tumors up to a certain tumor size. Knowing that TGFb expression or activation increases in irradiated tissues, we tested whether TGFb blockade may further enhance abscopal effects in conjunction with the anti-PD-1 plus anti-CD137 mAb combination. Indeed, TGFb blockade with 1D11, a TGFb-neutralizing mAb, markedly enhanced abscopal effects and overall treatment efficacy against subcutaneous tumors of either 4T1 breast cancer cells or large MC38 colorectal tumors. Increases in CD8 T cells infiltrating the nonirradiated lesion were documented upon combined treatment, which intensely expressed Granzyme-B as an indicator of cytotoxic effector capability. Interestingly, tumor tissue but not healthy tissue irradiation results in the presence of higher concentrations of TGFb in the nonirradiated contralateral tumor that showed smad2/3 phosphorylation increases in infiltrating CD8 T cells. In conclusion, radiotherapy-induced TGFb hampers abscopal efficacy even upon combination with a potent immunotherapy regimen. Therefore, TGFb blockade in combination with radioimmunotherapy results in greater efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.