Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth’s radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.
DC3 brought together simultaneous measurements of storm kinematics, structure, electrical activity, and chemistry to improve our knowledge of how thunderstorms affect the chemical composition of the troposphere.
Formation of organic nitrates (RONO) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NO), but the chemistry of RONO formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO) in the GEOS-Chem global chemical transport model with ∼25 × 25 km resolution over North America. We evaluate the model using aircraft (SEACRS) and ground-based (SOAS) observations of NO, BVOCs, and RONO from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO species measured during the campaigns. Gas-phase isoprene nitrates account for 25-50% of observed RONO in surface air, and we find that another 10% is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10% of observed boundary layer RONO were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO accounts for 60% of simulated gas-phase RONO loss in the boundary layer. Other losses are 20% by photolysis to recycle NO and 15% by dry deposition. RONO production accounts for 20% of the net regional NO sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NO emissions. This segregation implies that RONO production will remain a minor sink for NO in the Southeast US in the future even as NO emissions continue to decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.