Testosterone supplementation is commonly used for its effects on sexual function, bone health and body composition, yet its effects on disease outcomes are unknown. To better understand this, we identified genetic determinants of testosterone levels and related sex hormone traits in 425,097 UK Biobank study participants. Using 2,571 genome-wide significant associations, we demonstrate the genetic determinants of testosterone levels are substantially different between sexes, and that genetically higher testosterone is harmful for metabolic diseases in women but beneficial in men. For example, a genetically determined 1-standard deviation higher testosterone increases the risks of Type 2 diabetes (T2D) (OR=1.37 [1.22–1.53]) and polycystic ovary syndrome (OR=1.51 [1.33–1.72]) in women, but reduces T2D risk in men (OR=0.86 [0.76–0.98]). We also show adverse effects of higher testosterone on breast and endometrial cancers in women, and prostate cancer in men. Our findings provide insights into the disease impacts of testosterone and highlight the importance of sex-specific genetic analyses.
Genetic association results are often interpreted with the assumption that study participation does not affect downstream analyses. Understanding the genetic basis of participation bias is challenging since it requires the genotypes of unseen individuals. Here we demonstrate that it is possible to estimate comparative biases by performing a genome-wide association study contrasting one subgroup versus another. For example, we showed that sex exhibits artifactual autosomal heritability in the presence of sex-differential participation bias. By performing a genome-wide association study of sex in approximately 3.3 million males and females, we identified over 158 autosomal loci spuriously associated with sex and highlighted complex traits underpinning differences in study participation between the sexes. For example, the body mass index-increasing allele at FTO was observed at higher frequency in males compared to females (odds ratio = 1.02, P = 4.4 × 10 −36 ). Finally, we demonstrated how these biases can potentially lead to incorrect inferences in downstream analyses and propose a conceptual framework for addressing such biases. Our findings highlight a new challenge that genetic studies may face as sample sizes continue to grow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.