Steroid receptors are conditional transcription factors that, upon binding to their response elements, regulate the expression of target genes via direct protein interactions with transcriptional coactivators. We have analyzed the functional interactions between the androgen receptor (AR) and 160-kDa nuclear receptor coactivators. Upon overexpression in mammalian cells, these coactivators enhance the transcriptional activity of both the amino-terminal domain (NTD) and the ligand-binding domain (LBD) of the AR. The coactivator activity for the LBD is strictly ligand-controlled and depends on the nature of the DNA-binding domain to which it is fused. We demonstrate that the NTD physically interacts with coactivators and with the LBD and that this interaction, like the functional interaction between the LBD and p160 coactivators, relies on the activation function 2 (AF2) core domain. The mutation of a highly conserved lysine residue in the predicted helix 3 of the LBD (K720A), however, blunts the functional interaction with coactivators but not with the NTD. Moreover, this mutation does not affect the transcriptional activity of the full-size AR. A mutation in the NTD of activation function AF1a (I182A/L183A), which dramatically impairs the activity of the AR, has no effect on the intrinsic transcriptional activity of the NTD but interferes with the cooperation between the NTD and the LBD. Finally, p160 proteins in which the three LXXLL motifs are mutated retain most of their coactivator activity for the full-size AR, although they are no longer functional for the isolated LBD. Together, these data suggest that in the native AR the efficient recruitment of coactivators requires a functional association of the NTD with the LBD and that the binding of coactivators occurs primarily through the NTD.
The nuclear receptors constitute a large family of transcription factors characterized by a well conserved DNA-binding domain. The receptors for glucocorticoids, progestins, mineralocorticoids, and androgens constitute a subgroup because they bind in vitro with high affinity to DNA elements containing a partial palindrome of the core sequence 5-TGTTCT-3. In vivo, however, the corresponding steroids differentially regulate the expression of their target genes, even when more than one receptor type is present in a particular cell.The DNA-binding domains of the androgen and of the glucocorticoid receptors bind most androgen response elements with similar relative affinities. In contrast, one element (5-GGTTCTTGGAGTACT-3) which was recently described in the promoter region of the probasin gene selectively interacts with the DNA-binding domain of the androgen receptor and not with that of the glucocorticoid receptor. From studies with chimeric elements, it can be deduced that it is the left subsequence 5-GGTTCT-3 which excludes the glucocorticoid receptor domain from binding.In co-transfection experiments where the ARE of the C3(1) gene is responsive to both androgens and glucocorticoids, the probasin element is induced only by androgens and not by glucocorticoids. The existence of response elements which are recognized preferentially by the androgen receptor provides yet another possible mechanism to explain the differences of the in vivo effects between androgens and other steroids of the subgroup.Nuclear receptors are transcription factors which mediate signals of a variety of hormones. Upon ligand binding, the receptors activate transcription by interacting with specific DNA sequences located within or near gene promoters.All members of the nuclear receptor superfamily bind with high affinity to directly or inversely repeated DNA sequences (1) by the DNA-binding domain (DBD) 1 which contains two zinc-finger motifs. Mader et al. (2) have demonstrated that differences between the glucocorticoid receptor (GR) and the estrogen receptor (ER) involving three amino acids located in the so-called P-box, are responsible for the difference in sequence recognition. The GR recognizes the sequence 5Ј-TGT-TCT-3Ј, while the ER interacts with the
A new plant lectin from elderberry (Sambucus nigra L.) bark, which was shown by immunochemical techniques to bind specifically to terminal Neu5Ac(alpha 2-6)Gal/GalNAc residues of glycoconjugates, was immobilized onto Sepharose 4B (SNA-Sepharose) and its carbohydrate binding properties was determined using a series of standard compounds. Oligosaccharides, glycopeptides, or glycoproteins containing terminal Neu5Ac(alpha 2-6)Gal/GalNAc sequences bound to SNA-Sepharose and were eluted with 50-100 mM lactose, whereas those with Neu5Ac(alpha 2-3)Gal/GalNAc failed to bind to this column. Furthermore, the SNA-Sepharose column was capable of resolving two oligosaccharides/glycopeptides based on the number of Neu5Ac(alpha 2-6)Gal units present in each molecule. Application of this technique to two glycoproteins, fetuin and orosomucoid, revealed the presence of microheterogeneity. It was also shown that esterification of the carboxyl group of Neu5Ac units, or branching at the O-3 of the subterminal GalNAc (probably also Gal) destroyed the binding ability of the molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.