Copyright 2016 by the American Association for the Advancement of Science; all rights reserved.Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ( safe limit ).We estimate that land use and related pressures have already reduced local biodiversity intactness-the average proportion of natural biodiversity remaining in local ecosystems-beyond its recently proposed planetary boundary across 58.1%of the worlds land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development
1. Monitoring the impacts of anthropogenic threats and interventions to mitigate these threats is key to understanding how to best conserve biodiversity. Ecologists use many different study designs to monitor such impacts. Simpler designs lacking controls (e.g. Before-After (BA) and After) or pre-impact data (e.g. Control-Impact (CI)) are considered to be less robust than more complex designs (e.g. Before-After Control-Impact (BACI) or Randomized Controlled Trials (RCTs)). However, we lack quantitative estimates of how much less accurate simpler study designs are in ecology. Understanding this could help prioritize research and weight studies by their design's accuracy in meta-analysis and evidence assessment.2. We compared how accurately five study designs estimated the true effect of a simulated environmental impact that caused a step-change response in a population's density. We derived empirical estimates of several simulation parameters from 47 ecological datasets to ensure our simulations were realistic. We measured design performance by determining the percentage of simulations where: (a) the true effect fell within the 95% Confidence Intervals of effect size estimates, and (b) each design correctly estimated the true effect's direction and magnitude. We also considered how sample size affected their performance.3. We demonstrated that BACI designs performed: 1.3-1.8 times better than RCTs; 2.9-4.2 times versus BA; 3.2-4.6 times versus CI; and 7.1-10.1 times versus After designs (depending on sample size), when correctly estimating true effect's direction and magnitude to within ±30%. Although BACI designs suffered from low power at small sample sizes, they outperformed other designs for almost all performance measures. Increasing sample size improved BACI design accuracy, but only increased the precision of simpler designs around biased estimates. Synthesis and applications.We suggest that more investment in more robust designs is needed in ecology since inferences from simpler designs, even with large sample sizes may be misleading. Facilitating this requires longer-term funding and stronger research-practice partnerships. We also propose 'accuracy weights' and demonstrate how they can weight studies in three recent meta-analyses by | 2743
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.