A modular autonomous flow reactor combining monitoring technologies with a feedback algorithm is presented for the synthesis of the natural product carpanone. The autonomous self-optimizing system, controlled via MATLAB, was designed as a flexible platform enabling an adaptation of the experimental setup to the specificity of the chemical transformation to be optimized. The reaction monitoring uses either online high pressure liquid chromatography (HPLC) or in-line benchtop nuclear magnetic resonance (NMR) spectroscopy. The custom-made optimization algorithm derived from the Nelder-Mead and golden section search methods performs constrained optimizations of black-box functions in a multidimensional search domain, thereby assuming no a priori knowledge of the chemical reactions. This autonomous self-optimizing system allowed fast and efficient optimizations of the chemical steps leading to carpanone. This contribution is the first example of a multistep synthesis where all discrete steps were optimized with an autonomous flow reactor.
Two-dimensional nuclear magnetic resonance (2D NMR) forms a powerful tool for the quantitative analysis of complex mixtures such as samples of metabolic relevance. However, its use for quantitative purposes is far from being trivial, not only because of the associated experiment time, but also due to its subsequent high sensitivity to hardware instabilities affecting its precision. In this paper, an alternative approach is considered to measure absolute metabolite concentrations in complex mixtures with a high precision in a reasonable time. It is based on a "multi-scan single shot" (M3S) strategy, which is derived from the ultrafast 2D NMR methodology. First, the analytical performance of this methodology is compared to the one of conventional 2D NMR. 2D correlation spectroscopy (COSY) spectra are obtained in 10 min on model metabolic mixtures, with a precision in the 1-4% range (versus 5-18% for the conventional approach). The M3S approach also shows a better linearity than its conventional counterpart. It ensures that accurate quantitative results can be obtained provided that a calibration procedure is carried out. The M3S COSY approach is then applied to measure the absolute metabolite concentration in three breast cancer cell line extracts, relying on a standard addition protocol. M3S COSY spectra of such extracts are recorded in 20 min and give access to the absolute concentration of 14 major metabolites, showing significant differences between cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.