Associations regarding family history of type 1 diabetes and infantile autism and maternal history of rheumatoid arthritis and ASDs were confirmed from previous studies. A significant association between maternal history of celiac disease and ASDs was observed for the first time. The observed associations between familial autoimmunity and ASDs/infantile autism are probably attributable to a combination of a common genetic background and a possible prenatal antibody exposure or alteration in fetal environment during pregnancy.
Secretion of tumor necrosis factor-alpha (TNF-alpha) by macrophages plays a predominant role in the development and progression of rheumatoid arthritis. We demonstrate that knockdown of TNF-alpha expression in systemic macrophages by intraperitoneal (i.p.) administration of chitosan/small interfering RNA (siRNA) nanoparticles in mice downregulates systemic and local inflammation. Chitosan nanoparticles containing an unmodified anti-TNF-alpha Dicer-substrate siRNA (DsiRNA) mediated TNF-alpha knockdown (approximately 66%) in primary peritoneal macrophages in vitro. The presence of Cy3-labeled nanoparticles within peritoneal macrophages and specific TNF-alpha knockdown (approximately 44%) with TNF-alpha siRNA after i.p. injection supports our therapeutic approach. Downregulation of TNF-alpha-induced inflammatory responses arrested joint swelling in collagen-induced arthritic (CIA) mice dosed i.p. with anti-TNF-alpha DsiRNA nanoparticles. The use of 2'-O-Me-modified DsiRNA resulted in the lowest arthritic scores and correlated with reduced type I interferon (IFN) activation in macrophages in vivo compared with unmodified DsiRNA. Histological analysis of joints revealed minimal cartilage destruction and inflammatory cell infiltration in anti-TNF-alpha-treated mice. The onset of arthritis could be delayed using a prophylactic dosing regime. This work demonstrates nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages as a method to reduce both local and systemic inflammation, thereby presenting a novel strategy for arthritis treatment.
Atopic dermatitis (AD) is a common skin disease associated with a T(H)2 response and increased levels of T(H)2-associated cytokines and IgE. The mechanisms resulting in skewing the immune response in a T(H)2 direction in AD are not fully elucidated. However, such skewing has recently been associated with IL-25 in a murine model for allergic airway disease. The aim of this study was to investigate whether IL-25 may have a role in AD. We have identified IL-25-producing cells within the dermis of AD patients and propose that these cells are dendritic cells (DCs). This is supported by in vitro experiments that indicate that monocyte-derived DCs are capable of producing IL-25. As null mutations of filaggrin are associated with the development of an impaired skin barrier in AD, we investigated whether IL-25 affects filaggrin synthesis by keratinocytes. Using mRNA analysis, we have shown that IL-25 stimulation does indeed decrease filaggrin synthesis in cultured keratinocytes. These results suggest that IL-25 produced by DCs could have a dual role as both an inducer of the T(H)2 response and as an inhibitor of filaggrin synthesis, thereby directly affecting skin barrier function in AD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.