The shorter wavelengths of the visible light spectrum have been recently reported to induce a long-lasting hyperpigmentation but only in melano-competent individuals. Here, we provide evidence showing that OPN3 is the key sensor in melanocytes responsible for hyperpigmentation induced by the shorter wavelengths of visible light. The melanogenesis induced through OPN3 is calcium dependent and further activates CAMKII followed by CREB, extracellular signal-regulated kinase, and p38, leading to the phosphorylation of MITF and ultimately to the increase of the melanogenesis enzymes: tyrosinase and dopachrome tautomerase. Furthermore, blue light induces the formation of a protein complex that we showed to be formed by tyrosinase and dopachrome tautomerase. This multimeric tyrosinase/tyrosinase-related protein complex is mainly formed in dark-skinned melanocytes and induces a sustained tyrosinase activity, thus explaining the long-lasting hyperpigmentation that is observed only in skin type III and higher after blue light irradiation. OPN3 thus functions as the sensor for visible light pigmentation. OPN3 and the multimeric tyrosinase/tyrosinase-related protein complex induced after its activation appear as new potential targets for regulating melanogenesis but also to protect dark skins against blue light in physiological conditions and in pigmentary disorders.
Vitiligo affects 1% of the worldwide population. Halting disease progression and repigmenting the lesional skin represent the two faces of therapeutic challenge in vitiligo. We performed transcriptome analysis on lesional, perilesional, and non-depigmented skin from vitiligo patients and on matched skin from healthy subjects. We found a significant increase in CXCL10 in non-depigmented and perilesional vitiligo skin compared with levels in healthy control skin; however, neither CXCL10 nor other immune factors were deregulated in depigmented vitiligo skin. Interestingly, the WNT pathway, which is involved in melanocyte differentiation, was altered specifically in vitiligo skin. We demonstrated that oxidative stress decreases WNT expression/activation in keratinocytes and melanocytes. We developed an ex vivo skin model and confirmed the decrease activation of the WNT pathway in human skin subjected to oxidative stress. Finally, using pharmacological agents that activate the WNT pathway, we treated ex vivo depigmented skin from vitiligo patients and successfully induced differentiation of resident stem cells into pre-melanocytes. Our results shed light on the previously unrecognized role of decreased WNT activation in the prevention of melanocyte differentiation in depigmented vitiligo skin. Furthermore, these results support further clinical exploration of WNT agonists to repigment vitiligo lesions.
To further define the clinicopathological spectrum of onychomatricoma (OM). We report the clinical feature, histological, and immunophenotypic characteristics of 19 cases of OM diagnosed between 2002 and 2007. The characteristic histologic appearance of OM is sometimes difficult to grasp because of 3 main factors: the anatomic particularities of the nail apparatus, the often fragmented aspect of the tissue specimen, and the choice of the section planes, which strongly modified the morphologic appearances observed. To prevent these difficulties, we built a tridimensional model using serial, transverse, and longitudinal sections. This reconstitution gives us a better understanding of the apparent diversity of the morphologic aspects observed in linking them to the anatomic site of the tumor. OM of the matrix is characterized by a thick nail plate with porch roof. OM of the ventral aspect of the proximal nail fold (PNF) is characterized by a nail plate without porch roof, exhibiting either a woodworm-like appearance or multiple cavities. In this second category, the fibrous base becomes elongated in shape, taking the shape of the anatomic contour of the PNF. The stroma gives rise to numerous fibroepithelial digitations. This pattern is different from the classical OM visualized in longitudinal sections, which appears as a single and large fibroepithelial tumor, that is, the multiple distal epithelial digitations arranged along a transversal plane are not seen. In the PNF variant, the characteristic clinical signs of OM fail to appear. We individualize 3 misleading clinical variants: tumor with a verrucous surface that is located in the lateral nail fold, as a band pattern suggesting wart or Bowen disease; a total dystrophy of the nail unit mimicking a squamous cell carcinoma; and pseudofibrokeratoma type. In the OM located on the ventral matrix, 3 new specific histologic variants were noted: pleomorphic OM, OM with a predominantly collagenous stroma, and superficial acral fibromyxoma-;like OM. OM is a benign tumor with a broader morphologic spectrum than previously thought. When the nail plate is not available, the immunohistochemistry can aid diagnosis by highlighting the peculiar immunophenotyping of OM, which expresses CD34 but not CD99, epithelial membrane antigen, S-100 protein, actin, and desmin.
Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma.
Several reports have demonstrated the inhibitory effect of metformin, a widely used drug in the treatment of type 2 diabetes, on the proliferation of many cancers including melanoma. Recently, it has been shown that metformin is able to modulate the cAMP level in the liver. As cAMP has a crucial role in melanin synthesis and skin pigmentation, we investigated the effect of metformin on melanogenesis both in vitro and in vivo. We showed that metformin led to reduced melanin content in melanoma cells and in normal human melanocytes by decreasing cAMP accumulation and cAMP-responsive element-binding protein phosphorylation. This inhibitory effect is correlated with decreased expression of master genes of melanogenesis, microphthalmia-associated transcription factor, tyrosinase, dopachrome tautomerase, and tyrosinase-related protein 1. Furthermore, we demonstrated that the antimelanogenic effect of metformin is independent of the AMPK pathway. Interestingly, topical application of metformin induced tail whitening in mice. Finally, we confirmed the antimelanogenic effect of metformin on reconstituted human epidermis and on human skin biopsies. These data emphasize the depigmenting effect of metformin and suggest a clinical strategy for using metformin in the topical treatment of hyperpigmentation disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.