The aim of the study was to present first preliminary characterization of Turkish hospital wastewaters, their environmental risk, and a method for toxicity assessment. The hospital wastewater samples were collected from two of the largest medical faculty hospitals and a training and research hospital in Istanbul, Turkey. The samples from the selected hospitals were taken as grab samples on March 2014. Overall, 55 substances including pharmaceuticals and their metabolites, pesticides, and corrosion inhibitors were analyzed in all hospital wastewaters. Analysis of toxicity and the antibiotic resistance bacteria were investigated in addition to the chemical analysis in the wastewater of one hospital. Hazard quotients (HQs) and toxic units (TUs) were calculated as basis of the environmental risk assessment. Fourteen pharmaceuticals in hospital wastewater (HWW) were classified as "high risk" with HQ > 10. HQ values higher than 100 were determined for five antibiotics and one analgesic, namely, ofloxacin, clarithromycin, ciprofloxacin, sulfapyridine, trimethoprim, and diclofenac. Ofloxacin with an HQ of 9090 was observed to be the most hazardous compound. HQ and TU values of the wastewater treatment plant (WWTP) effluent dropped significantly due to dilution in the sewer. Further elimination by biological degradation or adsorption was observed only in some cases. However, the decreased HQ values do not the change environmental load significantly. Therefore, advanced treatment processes should be applied to remove the persistent compounds. In combination with the results on antibiotic resistance, we would prefer on-site treatment of hospital wastewater. Toxicological assessment was performed using cytotoxic and mutagenic screening tests. The results of the Ames assay showed that the native hospital wastewaters had strongly mutagenic activity with a ≤10-fold increase relative to negative controls. The mutagenic potentials of the samples were generally concentration and metabolic activation dependent. Multiple antibiotic resistances were demonstrated with the tested isolates to ciprofloxacin, trimethoprim, and ceftazidime. This study demonstrates that the hospital wastewaters in Istanbul exhibit strong environmental and toxicological risks, as well as high multiple drug resistance to commonly used antibiotics.
Carbapenem-resistant Acinetobacter baumannii is an important cause of nosocomial infections, particularly in patients in the intensive care units. As chronic infections are difficult to treat, attempts have been made to discover new antimicrobials. Ceragenins, designed to mimic the activities of antimicrobial peptides, are a new class of antimicrobial agents. In this study, the in vitro activities of CSA-13 either alone or in combination with colistin (sulphate), tobramycin, and ciprofloxacin were investigated using 60 carbapenem-resistant A. baumannii strains isolated from bacteremia patients blood specimens. MICs and MBCs were determined by microbroth dilution technique. Combinations were assessed by using checkerboard technique. The MIC50 values (mg/L) of CSA-13, colistin, tobramycin, and ciprofloxacin were 2, 1, 1.25, and 80, respectively. The MIC90 (mg/L) of CSA-13 and colistin were 8 and 4. The MBCs were equal to or twice greater than those of the MICs. Synergistic interactions were mostly seen with CSA-13-colistin (55%), whereas the least synergistic interactions were observed in the CSA-13-tobramycin (35%) combination. No antagonism was observed. CSA-13 appears to be a good candidate for further investigations in the treatment of A. baumannii infections. However, future studies should be performed to correlate the safety, efficacy, and pharmacokinetic parameters of this molecule.
Phytochemical composition of ethyl acetate fraction and total phenolic content, in vitro antioxidant, anti-inflammatory, antimicrobial activities of petroleum ether, chloroform, ethyl acetate and n-butanol fractions of the ethanol extract obtained from the subaerial parts of Scorzonera pygmaea Sibth. & Sm. (Asteraceae) were investigated. Nine compounds; scorzopygmaecoside (1), scorzonerol (2), cudrabibenzyl A (3), thunberginol C (4), scorzocreticoside I (5) and II (6), chlorogenic acid (7), chlorogenic acid methyl ester (8), 3,5-di-O-caffeoylquinic acid (9) were isolated and identified using spectroscopic methods. All substances were isolated for the first time from this species.Compounds 1 and 2 are new. The fractions showed high antioxidant capacity correlated with their phenolic content and no significant antimicrobial activity against tested bacteria and fungi. COX inhibition test was used to evaluate the anti-inflammatory activity and all the fractions showed low inhibition in comparison with indomethacin.
A series of 2-arylamino-3-chloro-1,4-naphthoquinone derivatives (3a–h) by the reaction of 2,3-dichloro-1,4-naphthoquinone with aryl amines (2a–h) and benzo[b]phenazine-6,11-dione derivatives (4a–c) by the treatment of 2-arylamino-3-chloro-1,4-naphthoquinone derivatives (3a–h) with sodium azide were synthesized and tested for theirin vitroantibacterial and antifungal activities. The results suggest that compounds3dand3ghad potent antifungal activity againstCandida albicans(MIC = 78.12 μg/mL). All synthesized compounds (3a–h,4a–c) possessed activity againstE. faecaliswith MIC values of between 312.5 and 1250 μg/mL. Benzo[b]phenazine-6,11-dione derivatives (4a–c) were mostly active against Gram-positive bacteria. The structures of the new members of the series were established on the basis of their spectral properties (IR,1H NMR,13C NMR, and mass spectrometry).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.