The control of growth is fundamental to the developing metazoan. Here, we show that CHICO, a Drosophila homolog of vertebrate IRS1-4, plays an essential role in the control of cell size and growth. Animals mutant for chico are less than half the size of wild-type flies, owing to fewer and smaller cells. In mosaic animals, chico homozygous cells grow slower than their heterozygous siblings, show an autonomous reduction in cell size, and form organs of reduced size. Although chico flies are smaller, they show an almost 2-fold increase in lipid levels. The similarities of the growth defects caused by mutations in chico and the insulin receptor gene in Drosophila and by perturbations of the insulin/IGF1 signaling pathway in vertebrates suggest that this pathway plays a conserved role in the regulation of overall growth by controling cell size, cell number, and metabolism.
Multiplatform testing for DNA, mRNA, and miRNA can accurately classify benign and malignant thyroid nodules, increase the diagnostic yield of molecular cytology, and further improve the preoperative risk-based management of benign nodules with AUS/FLUS or FN/SFN cytology.
Purpose
The diagnosis of pancreatic cystic lesions has increased dramatically. Most are benign, whereas some, such as intraductal papillary mucinous neoplasms (IPMN), represent precursors of pancreatic adenocarcinoma. Therapeutic stratification of IPMNs is challenging without precise information on dysplasia grade and presence of invasion. We assessed the diagnostic benefit of using miRNAs as biomarkers in pancreatic cyst fluid, focusing on IPMNs because of their frequency and malignant potential.
Experimental Design
RNA was extracted from 55 microdissected formalin-fixed, paraffin-embedded (FFPE) IPMN specimens, and 65 cyst fluid specimens aspirated following surgical resection. Expression of 750 miRNAs was evaluated with TaqMan miRNA Arrays using 22 FFPE and 15 cyst fluid specimens. Differential expression of selected miRNA candidates was validated in 33 FFPE and 50 cyst fluid specimens using TaqMan miRNA Assays.
Results
We identified 26 and 37 candidate miRNAs that distinguish low-grade from high-grade IPMNs using FFPE and cyst fluid specimens, respectively. A subset of 18 miRNAs, selected from FFPE and cyst fluid data, separated high-grade IPMNs from low-grade IPMNs, serous cystadenomas (SCA) and uncommon cysts, such as solid pseudopapillary neoplasms (SPN) and cystic pancreatic neuroendocrine tumors (PanNET). A logistic regression model using nine miRNAs allowed prediction of cyst pathology implying resection (high-grade IPMNs, PanNETs, and SPNs) versus conservative management (low-grade IPMNs, SCAs), with a sensitivity of 89%, a specificity of 100%, and area under the curve of 1.
Conclusions
We found candidate miRNAs that helped identify patients with high-grade IPMN and exclude nonmucinous cysts. These classifiers will require validation in a prospective setting to ultimately confirm their clinical usefulness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.